Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 16(1): 410, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37941062

RESUMO

BACKGROUND: Models can be used to study and predict the impact of interventions aimed at controlling the spread of infectious agents, such as Taenia solium, a zoonotic parasite whose larval stage causes epilepsy and economic loss in many rural areas of the developing nations. To enhance the credibility of model estimates, calibration against observed data is necessary. However, this process may lead to a paradoxical dependence of model parameters on location-specific data, thus limiting the model's geographic transferability. METHODS: In this study, we adopted a non-local model calibration approach to assess whether it can improve the spatial transferability of CystiAgent, our agent-based model of local-scale T. solium transmission. The calibration dataset for CystiAgent consisted of cross-sectional data on human taeniasis, pig cysticercosis and pig serology collected in eight villages in Northwest Peru. After calibration, the model was transferred to a second group of 21 destination villages in the same area without recalibrating its parameters. Model outputs were compared to pig serology data collected over a period of 2 years in the destination villages during a trial of T. solium control interventions, based on mass and spatially targeted human and pig treatments. RESULTS: Considering the uncertainties associated with empirical data, the model produced simulated pre-intervention pig seroprevalences that were successfully validated against data collected in 81% of destination villages. Furthermore, the model outputs were able to reproduce validated pig seroincidence values in 76% of destination villages when compared to the data obtained after the interventions. The results demonstrate that the CystiAgent model, when calibrated using a non-local approach, can be successfully transferred without requiring additional calibration. CONCLUSIONS: This feature allows the model to simulate both baseline pre-intervention transmission conditions and the outcomes of control interventions across villages that form geographically homogeneous regions, providing a basis for developing large-scale models representing T. solium transmission at a regional level.


Assuntos
Cisticercose , Doenças dos Suínos , Taenia solium , Teníase , Humanos , Animais , Suínos , Estudos Transversais , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/parasitologia , Cisticercose/epidemiologia , Cisticercose/prevenção & controle , Cisticercose/veterinária , Teníase/epidemiologia , Teníase/prevenção & controle , Teníase/parasitologia
2.
Pathogens ; 12(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37111483

RESUMO

The widespread dispersion of pigs infected with cysticercosis across endemic villages, low cyst burden among infected pigs, and low prevalence of taeniasis all suggest that pig ingestion of human feces is not the only mode of transmission for Taenia solium. Our objective was to evaluate the risk of porcine cysticercosis associated with exposure to human feces, dung beetles, and flies in an endemic community setting. We used a cluster-randomized cohort design to compare the risk of developing antibodies and infection among 120 piglets raised in either free-roaming (FR), standard corral (SC), or netted corral environments (NC). We collected monthly blood samples to detect serum antibodies and necropsied all pigs after 10 months to identify cysts. A total of 66 piglets developed antibodies with the relative risk of seropositivity in FR vs. all corralled pigs increasing significantly after 18 weeks. Of 108 necropsied pigs, 15 had T. solium cysts, all belonging to the FR group. Corrals were protective against infection but less so against seropositivity. NC, which did not completely exclude insects, did not provide added protection against seropositivity as compared to SC. The results of this study suggest that dung beetles and flies do not play an important role in infection.

3.
PLoS One ; 17(9): e0275247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166462

RESUMO

The pork tapeworm, Taenia solium, is the cause of a preventable zoonotic disease, cysticercosis, affecting both pigs and humans. Continued endemic transmission of T. solium is a major contributor of epilepsy and other neurologic morbidity, and the source of important economic losses, in many rural areas of developing countries. Simulation modelling can play an important role in aiding the design and evaluation of strategies to control or even eliminate transmission of the parasite. In this paper, we present a new agent based model of local-scale T. solium transmission and a new, non-local, approach to the model calibration to fit model outputs to observed human taeniasis and pig cysticercosis prevalence simultaneously for several endemic villages. The model fully describes all relevant aspects of T. solium transmission, including the processes of pig and human infection, the spatial distribution of human and pig populations, the production of pork for human consumption, and the movement of humans and pigs in and out in several endemic villages of the northwest of Peru. Despite the high level of uncertainty associated with the empirical measurements of epidemiological data associated with T. solium, the non-local calibrated model parametrization reproduces the observed prevalences with an acceptable precision. It does so not only for the villages used to calibrate the model, but also for villages not included in the calibration process. This important finding demonstrates that the model, including its calibrated parametrization, can be successfully transferred within an endemic region. This will enable future studies to inform the design and optimization of T. solium control interventions in villages where the calibration may be prevented by the limited amount of empirical data, expanding the possible applications to a wider range of settings compared to previous models.


Assuntos
Cisticercose , Doenças dos Suínos , Taenia solium , Teníase , Animais , Cisticercose/epidemiologia , Cisticercose/prevenção & controle , Cisticercose/veterinária , Humanos , Peru/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia , Teníase/epidemiologia , Teníase/prevenção & controle , Teníase/veterinária
4.
PLoS One ; 17(3): e0264898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286329

RESUMO

Taenia solium is an important cause of acquired epilepsy worldwide and remains endemic in Asia, Africa, and Latin America. Transmission of this parasite is still poorly understood despite the design of infection experiments to improve our knowledge of the disease, with estimates for critical epidemiological parameters, such as the probability of human-to-pig infection after exposure to eggs, still lacking. In this paper, a systematic review was carried out and eight pig infection experiments were analyzed to describe the probability of developing cysts. These experiments included different pathways of inoculation: with ingestion of proglottids, eggs, and beetles that ingested eggs, and direct injection of activated oncospheres into the carotid artery. In these experiments, different infective doses were used, and the numbers of viable and degenerated cysts in the body and brain of each pig were registered. Five alternative dose-response models (exponential, logistic, log-logistic, and exact and approximate beta-Poisson) were assessed for their accuracy in describing the observed probabilities of cyst development as a function of the inoculation dose. Dose-response models were developed separately for the presence of three types of cysts (any, viable only, and cysts in the brain) and considered for each of the four inoculation methods ("Proglottids", "Eggs", "Beetles" and "Carotid"). The exact beta-Poisson model best fit the data for the three types of cysts and all relevant exposure pathways. However, observations for some exposure pathways were too scarce to reliably define a dose-response curve with any model. A wide enough range of doses and sufficient sample sizes was only found for the "Eggs" pathway and a merged "Oral" pathway combining the "Proglottids", "Eggs" and "Beetles" pathways. Estimated parameter values from this model suggest that a low infective dose is sufficient to result in a 50% probability for the development of any cyst or for viable cyst infections. Although this is a preliminary model reliant on a limited dataset, the parameters described in this manuscript should contribute to the design of future experimental infections related to T. solium transmission, as well as the parameterization of simulation models of transmission aimed at informing control.


Assuntos
Besouros , Cisticercose , Cistos , Doenças dos Suínos , Taenia solium , Animais , Cisticercose/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia
5.
PLoS Negl Trop Dis ; 15(10): e0009885, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34705827

RESUMO

BACKGROUND: The pork tapeworm (Taenia solium) is a parasitic helminth that imposes a major health and economic burden on poor rural populations around the world. As recognized by the World Health Organization, a key barrier for achieving control of T. solium is the lack of an accurate and validated simulation model with which to study transmission and evaluate available control and elimination strategies. CystiAgent is a spatially-explicit agent based model for T. solium that is unique among T. solium models in its ability to represent key spatial and environmental features of transmission and simulate spatially targeted interventions, such as ring strategy. METHODS/PRINCIPAL FINDINGS: We validated CystiAgent against results from the Ring Strategy Trial (RST)-a large cluster-randomized trial conducted in northern Peru that evaluated six unique interventions for T. solium control in 23 villages. For the validation, each intervention strategy was replicated in CystiAgent, and the simulated prevalences of human taeniasis, porcine cysticercosis, and porcine seroincidence were compared against prevalence estimates from the trial. Results showed that CystiAgent produced declines in transmission in response to each of the six intervention strategies, but overestimated the effect of interventions in the majority of villages; simulated prevalences for human taenasis and porcine cysticercosis at the end of the trial were a median of 0.53 and 5.0 percentages points less than prevalence observed at the end of the trial, respectively. CONCLUSIONS/SIGNIFICANCE: The validation of CystiAgent represented an important step towards developing an accurate and reliable T. solium transmission model that can be deployed to fill critical gaps in our understanding of T. solium transmission and control. To improve model accuracy, future versions would benefit from improved data on pig immunity and resistance, field effectiveness of anti-helminthic treatment, and factors driving spatial clustering of T. solium infections including dispersion and contact with T. solium eggs in the environment.


Assuntos
Cisticercose/transmissão , Cisticercose/veterinária , Doenças dos Suínos/transmissão , Taenia solium/fisiologia , Zoonoses/transmissão , Animais , Cisticercose/epidemiologia , Cisticercose/parasitologia , Modelos Epidemiológicos , Feminino , Humanos , Peru/epidemiologia , Estudos Prospectivos , População Rural/estatística & dados numéricos , Análise Espacial , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/parasitologia , Taenia solium/genética , Taenia solium/isolamento & purificação , Zoonoses/epidemiologia , Zoonoses/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA