Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 17(8): e202301546, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38438304

RESUMO

Glycerol carbonate (GC) is one of the most attractive green chemicals involved in several applications such as polymer synthesis, e. g., the production of polyurethanes and polycarbonates. This relevant chemical can be produced, in a green way, using CO2 (from carbon capture) and glycerol (a byproduct from biodiesel manufacturing). Therefore, in this work, a comprehensive analysis of the GC production process is conducted based on the following synthesis route: urea-dimethyl carbonate-GC using carbon dioxide and glycerol as the main raw materials where the synthesis pathway was efficiently integrated using Aspen Plus. A techno-economic analysis was performed in order to estimate the required capital investment and operating cost for the whole GC process, providing insights on individual capital cost requirements for the urea, dimethyl carbonate, and GC production sections. A total capital cost of $192.1 MM, and a total operating cost of $225.7 MM/y were estimated for the process. The total annualized cost was estimated as $1,558 USD/t of GC produced, competitive with current market price.

2.
Adv Colloid Interface Sci ; 324: 103096, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309035

RESUMO

Antibiotics are considered as the new generation water pollutants as these disturb endocrine systems if water contaminated with antibiotics is consumed. Among many antibiotics norfloxacin is present in various natural water bodies globally. This antibiotic is considered an emerging pollutant due to its low degradation in aquatic animals. Besides, it has many side effects on human vital organs. Therefore, the present article discusses the recent advances in the removal of norfloxacin by adsorption. This article describes the presence of norfloxacin in natural water, consumption, toxicity, various adsorbents for norfloxacin removal, optimization factors for norfloxacin removal, kinetics, thermodynamics, modeling, adsorption mechanism and regeneration of the adsorbents. Adsorption takes place in a monolayer following the Langmuir model. The Pseudo-second order model represents the kinetic data. The adsorption capacity ranged from 0.924 to 1282 mg g-1. In this sense, the parameters such as the NFX concentration added to the adsorbent textural properties exerted a great influence. Besides, the fixed bed-based removal at a large scale is also included. In addition to this, the simulation studies were also discussed to describe the adsorption mechanism. Finally, the research challenges and future perspectives have also been highlighted. This article will be highly useful for academicians, researchers, industry persons, and government authorities for designing future advanced experiments.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Animais , Humanos , Norfloxacino/análise , Água , Adsorção , Antibacterianos , Cinética , Concentração de Íons de Hidrogênio
3.
Environ Sci Pollut Res Int ; 30(40): 92436-92450, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37490251

RESUMO

The multicomponent adsorption of synthetic dyes has great relevance in the treatment of effluents due to the complexity of the adsorbate-adsorbent interactions. Therefore, this study provides useful information about the adsorption capacity of methylene blue (MB) and crystal violet (CV) in a bioadsorbent (mandarin peels) in a single-component and competitive system using detailed multivariate calibration analysis. The PLS1 multivariate calibration model was used to quantify the adsorbates. In mono and two-component systems, the adsorption capacity of CV (1.26-1.36 mg g-1) was superior when compared to MB (0.925-0.913 mg g-1), characterizing synergistic adsorption for CV and antagonistic adsorption for MB. The Sips model was effective for describing single-component systems, suggesting that adsorption did not occur in the monolayer. For competitive adsorption, modified, unmodified, and extended models were used to understand the interactions between the dyes and the bioadsorbent. The modified Redlich-Peterson (MRP) model was effective in describing the behavior of the binary system, indicating that the interaction forces with the adsorbate were significant. Thus, the bioadsorbent showed promising results for competitive adsorption, thus being of relevance to the industrial sector. Density functional calculations were also performed to characterize the atomic interactions for the removal of both dyes on mandarin peels.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Violeta Genciana , Adsorção , Calibragem , Teoria da Densidade Funcional , Cinética , Corantes/química , Poluentes Químicos da Água/análise
4.
Nanomaterials (Basel) ; 12(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014608

RESUMO

Chromium pollution represents a worldwide concern due to its high toxicity and bioaccumulation in organisms and ecosystems. An interesting material to remove metal ions from water is a whey-protein-based material elaborated by electrospinning, which is an emerging method to produce adsorbent membranes with diverse applications. The aim of this study was to prepare an adsorbent membrane of whey protein isolate (WPI) and polycaprolactone (PCL) by electrospinning to remove chromium ions from water. The adsorbent membrane was synthesized by a central composed design denaturing WPI using 2-Mercaptoethanol and mixing it with PCL to produce electrospun nanofibers. The adsorbent membrane was characterized by denaturation, Scanning Electron Microscope, Fourier-Transform Infrared Spectroscopy, Contact Angle, Thermogravimetric Analysis, and X-ray Photoelectron Spectrometry. The adsorption properties of this membrane were assessed in the removal of chromium. The removal performance of the membrane was enhanced by an increase in temperature showing an endothermic adsorption process. The adsorption process of chromium ions onto the nanofiber membrane followed the Sips adsorption isotherm, while the adsorption kinetics followed a pseudo-second kinetics where the maximum adsorption capacity was 31.0 mg/g at 30 °C and pH 2. This work provides a novel method to fabricate a hybrid membrane with amyloid-type fibrils of WPI and PCL, which is a promising adsorbent to remove heavy metal ions from water.

5.
Membranes (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266234

RESUMO

Water contamination by mercury and chromium has a direct effect in human health. A promising technology to remove heavy metals by membrane filtration is the use of hybrid membranes produced with whey protein fibrils (WPF) and activated carbon (AC). In this study, the best conditions to produce WPF by heat treatment were determined to maximize the removal of mercury and chromium from water using a central composed design. The results indicated that the best conditions to prepare WPF were 74 °C, 7 h and 3.8% of whey protein with adsorption capacities of 25 and 18 mg/g and removal efficiencies of 81 and 57% for mercury and chromium, respectively. WPF and AC were used to prepare a hybrid membrane that was characterized using transmission electron microscopy, atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area measurements. Batch filtration experiments were performed with the hybrid membrane for chromium and mercury removal at 25, 50 and 100 mg/L to determine its adsorption capacities. A high performance of the hybrid membrane was demonstrated removing efficiently mercury and chromium from water, thus supporting more than ten filtration cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA