Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37514150

RESUMO

Antimicrobial resistance (AMR) developed by microorganisms is considered one of the most critical public health issues worldwide. This problem is affecting the lives of millions of people and needs to be addressed promptly. Mainly, antibiotics are the substances that contribute to AMR in various strains of bacteria and other microorganisms, leading to infectious diseases that cannot be effectively treated. To avoid the use of antibiotics and similar drugs, several approaches have gained attention in the fields of materials science and engineering as well as pharmaceutics over the past five years. Our focus lies on the design and manufacture of polymeric-based materials capable of incorporating antimicrobial agents excluding the aforementioned substances. In this sense, two of the emerging techniques for materials fabrication, namely, electrospinning and 3D printing, have gained significant attraction. In this article, we provide a summary of the most important findings that contribute to the development of antimicrobial systems using these technologies to incorporate various types of nanomaterials, organic molecules, or natural compounds with the required property. Furthermore, we discuss and consider the challenges that lie ahead in this research field for the coming years.

2.
Nanotechnology ; 31(17): 172002, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31931493

RESUMO

The development of three-dimensional (3D) scaffolds with physical and chemical topological cues at the macro-, micro-, and nanometer scale is urgently needed for successful tissue engineering applications. 3D scaffolds can be manufactured by a wide variety of techniques. Electrospinning technology has emerged as a powerful manufacturing technique to produce non-woven nanofibrous scaffolds with very interesting features for tissue engineering products. However, electrospun scaffolds have some inherent limitations that compromise the regeneration of thick and complex tissues. By integrating electrospinning and other fabrication technologies, multifunctional 3D fibrous assemblies with micro/nanotopographical features can be created. The proper combination of techniques leads to materials with nano and macro-structure, allowing an improvement in the biological performance of tissue-engineered constructs. In this review, we focus on the most relevant strategies to produce electrospun polymer/composite scaffolds with 3D architecture. A detailed description of procedures involving physical and chemical agents to create structures with large pores and 3D fiber assemblies is introduced. Finally, characterization and biological assays including in vitro and in vivo studies of structures intended for the regeneration of functional tissues are briefly presented and discussed.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais/química , Eletroquímica , Nanofibras/química , Polímeros/química , Porosidade
3.
Polymers (Basel) ; 11(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652987

RESUMO

A method for the synthesis of a linear block copolymer (PNIPAM-b-PANI), containing a thermoresponsive block (poly(N-isopropylacrylamide), PNIPAM) and a Near Infrared (NIR) light-absorbing block (polyaniline, PANI), is reported. The synthetic approach involves a two-step successive polymerization reaction. First, the radical polymerization of NIPAM is done using 4-aminothiophenol as a chain transfer agent for the obtention of thermosensitive block terminated with an aniline (ANI) moiety. Second, the oxidative polymerization of ANI is initiated in ANI moiety of thermosensitive block to grow the second conductive PANI block. 1H nuclear magnetic resonance (NMR) and FT-IR spectroscopy shows the characteristics peaks of both polymeric blocks revealing the successful copolymerization process. Static Light Scattering (SLS) and UV-Visible combined measurements allowed the determination of the Mw for PNIPAM-b-PANI macromolecule: 5.5 × 105 g mol-1. The resulting copolymer is soluble in water (8.3 g L-1) and in non-aqueous solvents, such as ethanol, formic acid, acetonitrile, and others. Both polymer blocks chains show the properties of the polymer chains. The block copolymer shows a lower critical solution temperature (LCST) at the same temperature (32-34 °C) than PNIPAM, while the copolymer shows pH dependent UV-vis-NIR absorption similar to PANI. The PNIPAM block suffers a coil to globule transition upon NIR light irradiation (785 nm, 100 mW), as shown by turbidimetry and Atomic Force Microscopy (AFM), due to local heating (more than 9 °C in 12 min) induced by the NIR absorption at the PANI block. Furthermore, the electrical conductivity of PNIPAM-b-PANI thin films is demonstrated (resistivity of 5.3 × 10-4 Ω-1 cm-1), indicating that the PANI block is present in its conductive form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA