Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurology ; 103(5): e209764, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39151102

RESUMO

BACKGROUND AND OBJECTIVES: Childhood cerebral adrenoleukodystrophy (C-ALD) is a severe inflammatory demyelinating disease that must be treated at an early stage to prevent permanent brain injury and neurocognitive decline. In standard clinical practice, C-ALD lesions are detected and characterized by a neuroradiologist reviewing anatomical MRI scans. We aimed to assess whether diffusion tensor imaging (DTI) is sensitive to the presence and severity of C-ALD lesions and to investigate associations with neurocognitive outcomes after hematopoietic cell therapy (HCT). METHODS: In this retrospective cohort study, we analyzed high-resolution anatomical MRI, DTI, and neurocognitive assessments from boys with C-ALD undergoing HCT at the University of Minnesota between 2011 and 2021. Longitudinal DTI data were compared with an age-matched group of boys with ALD and no lesion (NL-ALD). DTI metrics were obtained for atlas-based regions of interest (ROIs) within 3 subdivisions of the corpus callosum (CC), corticospinal tract (CST), and total white matter (WM). Between-group baseline and slope differences in fractional anisotropy (FA) and axial (AD), radial (RD), and mean (MD) diffusivities were compared using analysis of covariance accounting for age, MRI severity (Loes score), and lesion location. RESULTS: Among patients with NL-ALD (n = 14), stable or increasing FA, stable AD, and stable or decreasing RD and MD were generally observed during the 1-year study period across all ROIs. In comparison, patients with mild posterior lesions (Loes 1-2; n = 13) demonstrated lower baseline FA in the CC splenium (C-ALD 0.50 ± 0.08 vs NL-ALD 0.58 ± 0.04; pBH = 0.022 adjusted Benjamini-Hochberg p-value), lower baseline AD across ROIs (e.g., C-ALD 1.34 ± 0.03 ×10-9 m2/s in total WM vs NL-ALD 1.38 ± 0.04 ×10-9 m2/s; pBH = 0.005), lower baseline RD in CC body and CST, and lower baseline MD across ROIs except CC splenium. Longitudinal slopes in CC splenium showed high sensitivity and specificity in differentiating early C-ALD from NL-ALD. Among all patients with C-ALD (n = 38), baseline Loes scores and DTI metrics were associated with post-HCT neurocognitive functions, including processing speed (e.g., FA WM Spearman correlation coefficient R = 0.64) and visual-motor integration (e.g., FA WM R = 0.71). DISCUSSION: DTI was sensitive to lesion presence and severity as well as clinical neurocognitive effects of C-ALD. DTI metrics quantify C-ALD even at an early stage.


Assuntos
Adrenoleucodistrofia , Corpo Caloso , Imagem de Tensor de Difusão , Substância Branca , Humanos , Masculino , Adrenoleucodistrofia/diagnóstico por imagem , Adrenoleucodistrofia/complicações , Criança , Estudos Retrospectivos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Adolescente , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Pré-Escolar , Transplante de Células-Tronco Hematopoéticas , Testes Neuropsicológicos , Estudos de Coortes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746371

RESUMO

Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.

3.
J Inherit Metab Dis ; 47(2): 327-339, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38112342

RESUMO

Cerebellar atrophy is a characteristic sign of late-onset Tay-Sachs disease (LOTS). Other structural neuroimaging abnormalities are inconsistently reported. Our study aimed to perform a detailed whole-brain analysis and quantitatively characterize morphometric changes in LOTS patients. Fourteen patients (8 M/6F) with LOTS from three centers were included in this retrospective study. For morphometric brain analyses, we used deformation-based morphometry, voxel-based morphometry, surface-based morphometry, and spatially unbiased cerebellar atlas template. The quantitative whole-brain morphometric analysis confirmed the finding of profound pontocerebellar atrophy with most affected cerebellar lobules V and VI in LOTS patients. Additionally, the atrophy of structures mainly involved in motor control, including bilateral ventral and lateral thalamic nuclei, primary motor and sensory cortex, supplementary motor area, and white matter regions containing corticospinal tract, was present. The atrophy of the right amygdala, hippocampus, and regions of occipital, parietal and temporal white matter was also observed in LOTS patients in contrast with controls (p < 0.05, FWE corrected). Patients with dysarthria and those initially presenting with ataxia had more severe cerebellar atrophy. Our results show predominant impairment of cerebellar regions responsible for speech and hand motor function in LOTS patients. Widespread morphological changes of motor cortical and subcortical regions and tracts in white matter indicate abnormalities in central motor circuits likely coresponsible for impaired speech and motor function.


Assuntos
Doença de Tay-Sachs , Substância Branca , Humanos , Doença de Tay-Sachs/patologia , Substância Branca/diagnóstico por imagem , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Encéfalo/patologia , Atrofia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA