Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36831956

RESUMO

The demand for new devices that enable the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) at a relatively low cost and that are fast and feasible to be used as point-of-care is required overtime on a large scale. In this sense, the use of sustainable materials, for example, the bio-based poly (ethylene terephthalate) (Bio-PET) can be an alternative to current standard diagnostics. In this work, we present a flexible disposable printed electrode based on a platinum thin film on Bio-PET as a substrate for the development of a sensor and immunosensor for the monitoring of COVID-19 biomarkers, by the detection of L-cysteine and the SARS-CoV-2 spike protein, respectively. The electrode was applied in conjunction with 3D printing technology to generate a portable and easy-to-analyze device with a low sample volume. For the L-cysteine determination, chronoamperometry was used, which achieved two linear dynamic ranges (LDR) of 3.98-39.0 µmol L-1 and 39.0-145 µmol L-1, and a limit of detection (LOD) of 0.70 µmol L-1. The detection of the SARS-CoV-2 spike protein was achieved by both square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) by a label-free immunosensor, using potassium ferro-ferricyanide solution as the electrochemical probe. An LDR of 0.70-7.0 and 1.0-30 pmol L-1, with an LOD of 0.70 and 1.0 pmol L-1 were obtained by SWV and EIS, respectively. As a proof of concept, the immunosensor was successfully applied for the detection of the SARS-CoV-2 spike protein in enriched synthetic saliva samples, which demonstrates the potential of using the proposed sensor as an alternative platform for the diagnosis of COVID-19 in the future.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , Platina , Técnicas Biossensoriais/métodos , Cisteína , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos
2.
Anal Chem ; 94(17): 6417-6429, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35348329

RESUMO

The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field.


Assuntos
Impressão Tridimensional , Protocolos Clínicos , Eletrodos
3.
Anal Chim Acta ; 1142: 135-142, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33280691

RESUMO

The variation in biomarkers levels, such as L-methionine, can be an indicator of health problems or diseases, such as metabolism, neuropsychiatric disorders, or some virus infections. Thus, the development of accurate sensors, with low-cost and rapid response has been gaining increasing importance and attractiveness for the early diagnosis of diseases. In this regard, we have proposed a method for L-methionine electrochemical detection using a low-cost and simple arrangement of 3D-printed electrodes (working, reference, and auxiliary electrodes) based on polylactic acid/graphene filament (PLA-G), in which all electrodes were printed. The working electrode was chemically and electrochemically treated, showing a high electroactive area, with graphene edge plans exposure and better electron transfer when compared to the untreated electrode. An excellent analytical performance was obtained with a sensitivity of 0.176 µAL µmol-1, a linear dynamic range of 5.0 µmol L-1- 3000 µmol L-1 and limit of detection of 1.39 µmol L-1. The proposed device was successfully applied for L-methionine detection in spiked serum samples, showing satisfactory recovery values. This indicates the potentiality of the proposed arrangement of electrodes for the L-methionine detection in biological samples at different concentration levels.


Assuntos
Técnicas Eletroquímicas , Grafite , Eletrodos , Metionina , Impressão Tridimensional
4.
Anal Chim Acta ; 1141: 57-62, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33248662

RESUMO

We report in this communication a ready-to-use fused deposition modeling (FDM) based 3D-printed spectroelectrochemical cell to perform for the first time voltammetry of immobilized microparticles (VIMP) and Raman spectroscopy in situ using acrylonitrile butadiene styrene (ABS) as the filament material for printing. The 3D-printed cell was applied to evaluate solid state electrochemical behavior of tadalafil as a proof-of-concept. Several advantages were achieved in the use of the developed device, such as less manipulation of the working electrode, monitoring the same region of the solid microparticles before and after electrochemical measurements, better control of the laser incidence, low-cost and low-time production. Furthermore, the device was printed in a single-step, without handling to assembly and it has an estimated material cost of approximately 2 $. The use of 3D-printing technology was significantly important to integrate Raman spectroscopic method with VIMP measurements and to support mechanism elucidation and characterization of the compounds with less manipulation of the working electrode, avoiding loss of solid products formed from electrochemical reactions.

5.
Analyst ; 145(4): 1207-1218, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31858099

RESUMO

This paper reports the comparison of the electrochemical properties of 3D PLA-graphene electrodes (PLA-G) under different activation conditions and through different processes. In this work, the performance of the electrodes was evaluated after polishing, electrochemical and chemical treatments and a combination of them. The best results were obtained with hydroxide activation using 1.0 mol L-1 NaOH for 30 min of immersion, which promoted the saponification of PLA exposing the graphene nanoribbon structures. The improvement was more evident also after electrochemical activation, which led to a great increase in surface area, defects, electron transfer rate and amount of edge sites. The analytical performance of the proposed PLA-GNaOH-30-EC electrode was evaluated in the presence of dopamine (DA) by three electrochemical techniques, presenting a broad linear range, and limits of detection of 3.49, 2.17 and 1.67 µmol L-1 were obtained by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV), respectively. The separation and quantification of DA in the presence of AA and UA was also reported. The sensor showed good repeatability and reproducibility and was successfully applied to DA determination in synthetic urine and human serum, showing good recovery, from 88.8 to 98.4%. Therefore, the activation methods were essential for the improvement in the 3D PLA-G electrode properties, allowing graphene surface alteration and electrochemical enhancement in the sensing of molecular targets.


Assuntos
Dopamina/análise , Eletroquímica/instrumentação , Grafite/química , Poliésteres/química , Impressão Tridimensional , Eletrodos , Limite de Detecção , Reprodutibilidade dos Testes , Ácido Úrico/química
6.
Colloids Surf B Biointerfaces ; 118: 289-97, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24780436

RESUMO

This paper describes the synthesis of silver nanoparticles using an aqueous silver nitrate solution in the presence of glucose as a reducing agent, sodium hydroxide as a reaction catalyst and ß-CD as a stabilizer. The structure and the morphology associated to the stabilizing layer around the silver nanoparticles were investigated. Raman spectroscopy confirmed the nanoparticle surface modification by ß-CD, demonstrating the interaction between the ß-CD rim hydroxyl groups and the AgNP surface. Transmission electron microscopy images showed an average 28.0nm diameter pseudo-spherical nanoparticles. Apart from this, a novel characterization of the ß-CD layer surrounding the nanoparticles was carried out by using complementary analytical electron microscopy based on electron spectroscopy imaging in the transmission microscope. Mapping images revealed the presence of carbon and oxygen, demonstrating the existence of a uniform and interacting ß-CD layer covering the nanoparticles. The antibacterial activity was also investigated and the ß-CD-coated silver nanoparticles showed a promising bactericidal activity against the microorganism Escherichia coli.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanopartículas Metálicas/química , Prata/química , beta-Ciclodextrinas/química , Materiais Revestidos Biocompatíveis/farmacologia , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Pseudomonas syringae/efeitos dos fármacos , Prata/farmacologia , Soluções , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria , Fatores de Tempo , beta-Ciclodextrinas/farmacologia
7.
J Colloid Interface Sci ; 358(1): 39-46, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21435649

RESUMO

We synthesized magnetic spinel ferrites from trimetallic single-source precursors. Fe(II), Co(II), and Ni(II) ferrite nanoparticles in the range of 9-25 nm were synthesized by solvothermal decomposition of trimetallic acetate complex precursors in benzyl ether in the presence of oleic acid and oleylamine, using 1,2-dodecanediol as the reducing agent. For comparison, spinel ferrite nanoparticles were synthesized by stoichiometric mixtures of metal acetate or acetylacetonate salts. The nanoparticles (NP) were characterized by TEM, DLS, powder XRD, and Raman spectroscopy; and their magnetic properties were characterized by ZFC-FC and M(H) measurements. The ferrite-NP were more homogeneous and had a narrower size distribution when trimetallic complexes were used as precursors. As a consequence, the magnetic properties of these ferrite-NP are closer to the aimed room temperature superparamagnetic behavior, than are those of other ferrites obtained by a mixture of salts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA