Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biometals ; 36(3): 639-655, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36626098

RESUMO

Liver cancer and leukemia are the fourth and first causes, respectively, of cancer death in children and adults worldwide. Moreover, cancer treatments, although beneficial, remain expensive, invasive, toxic, and affect the patient's quality of life. Therefore, new anticancer agents are needed to improve existing agents. Because bovine lactoferrin (bLF) and its derived peptides have antitumor properties, we investigated the anticancer effect of bLF and LF peptides (LFcin17-30, LFampin265-284 and LFchimera) on liver cancer HepG2 cells and leukemia Jurkat cells. HepG2 and Jurkat cells were incubated with bLF and LF peptides. Cell proliferation was quantified by an MTT assay, and cell morphology and damage were visualized by light microscopy or by phalloidin-TRITC/DAPI staining. The discrimination between apoptosis/necrosis was performed by staining with Annexin V-Alexa Fluor 488 and propidium iodide, and the expression of genes related to apoptosis was analyzed in Jurkat cells. Finally, the synergistic interaction of bLF and LF peptides with cisplatin or etoposide was assessed by an MTT assay and the combination index. The present study demonstrated that bLF and LF peptides inhibited the viability of HepG2 and Jurkat cells, inducing damage to the cell monolayer of HepG2 cells and morphological changes in both cell lines. bLF, LFcin17-30, and LFampin265-284 triggered apoptosis in both cell lines, whereas LFchimera induced necrosis. These results suggested that bLF and LF peptides activate apoptosis by increasing the expression of genes of the intrinsic pathway. Additionally, bLF and LF peptides synergistically interacted with cisplatin and etoposide. In conclusion, bLF and LF peptides display anticancer activity against liver cancer and leukemia cells, representing an alternative or improvement in cancer treatment.


Assuntos
Lactoferrina , Neoplasias Hepáticas , Criança , Humanos , Lactoferrina/farmacologia , Lactoferrina/química , Células Jurkat , Células Hep G2 , Cisplatino , Etoposídeo , Qualidade de Vida , Peptídeos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Necrose
2.
Biochem Pharmacol ; 201: 115079, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35551916

RESUMO

Histatin-1 is a salivary peptide with antimicrobial and wound healing promoting activities, which was previously shown to stimulate angiogenesis in vitro and in vivo via inducing endothelial cell migration. The mechanisms underlying the proangiogenic effects of Histatin-1 remain poorly understood and specifically, the endothelial receptor for this peptide, is unknown. Based on the similarities between Histatin-1-dependent responses and those induced by the prototypical angiogenic receptor, vascular endothelial growth factor receptor 2 (VEGFR2), we hypothesized that VEGFR2 is the Histatin-1 receptor in endothelial cells. First, we observed that VEGFR2 is necessary for Histatin-1-induced endothelial cell migration, as shown by both pharmacological inhibition studies and siRNA-mediated ablation of VEGFR2. Moreover, Histatin-1 co-immunoprecipitated and co-localized with VEGFR2, associating spatial proximity between these proteins with receptor activation. Indeed, pulldown assays with pure, tagged and non-tagged proteins showed that Histatin-1 and VEGFR2 directly interact in vitro. Optical tweezers experiments permitted estimating kinetic parameters and rupture forces, indicating that the Histatin-1-VEGFR2 interaction is transient, but specific and direct. Sequence alignment and molecular modeling identified residues Phe26, Tyr30 and Tyr34 within the C-terminal domain of Histatin-1 as relevant for VEGFR2 binding and activation. This was corroborated by mutation and molecular dynamics analyses, as well as in direct binding assays. Importantly, these residues were required for Histatin-1 to induce endothelial cell migration and angiogenesis in vitro. Taken together, our findings reveal that VEGFR2 is the endothelial cell receptor of Histatin-1 and provide insights to the mechanism by which this peptide promotes endothelial cell migration and angiogenesis.


Assuntos
Células Endoteliais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Proteínas de Transporte/metabolismo , Movimento Celular , Células Endoteliais/metabolismo , Histatinas/metabolismo , Histatinas/farmacologia , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
J Tissue Eng Regen Med ; 15(4): 336-346, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480156

RESUMO

Histatin-1 is a salivary antimicrobial peptide involved in the maintenance of enamel and oral mucosal homeostasis. Moreover, Histatin-1 has been shown to promote re-epithelialization in soft tissues, by stimulating cell adhesion and migration in oral and dermal keratinocytes, gingival and skin fibroblasts, endothelial cells and corneal epithelial cells. The broad-spectrum activity of Histatin-1 suggests that it behaves as a universal wound healing promoter, although this is far from being clear yet. Here, we report that Histatin-1 is a novel osteogenic factor that promotes bone cell adhesion, migration, and differentiation. Specifically, Histatin-1 promoted cell adhesion, spreading, and migration of SAOS-2 cells and MC3T3-E1 preosteoblasts in vitro, when placed on a fibronectin matrix. Besides, Histatin-1 induced the expression of osteogenic genes, including osteocalcin, osteopontin, and Runx2, and increased both activity and protein levels of alkaline phosphatase. Furthermore, Histatin-1 promoted mineralization in vitro, as it augmented the formation of calcium deposits in both SAOS-2 and MC3T3-E1 cells. Mechanistically, although Histatin-1 failed to activate ERK1/2, FAK, and Akt, which are signaling proteins associated with osteogenic differentiation or cell migration, it triggered nuclear relocalization of ß-catenin. Strikingly, the effects of Histatin-1 were recapitulated in cells that are nonosteogenically committed, since it promoted surface adhesion, migration, and the acquisition of osteogenic markers in primary mesenchymal cells derived from the apical papilla and dental pulp. Collectively, these observations indicate that Histatin-1 is a novel osteogenic factor that promotes bone cell differentiation, surface adhesion and migration, as crucial events required for bone tissue regeneration.


Assuntos
Diferenciação Celular , Movimento Celular , Histatinas/farmacologia , Osteogênese , Animais , Calcificação Fisiológica/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Front Microbiol ; 10: 2386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681240

RESUMO

Streptococcus pneumoniae colonizes the upper airways of children and the elderly. Colonization progresses to persistent carriage when S. pneumoniae forms biofilms, a feature required for the development of pneumococcal disease. Nasopharyngeal biofilms are structured with a matrix that includes extracellular DNA (eDNA), which is sourced from the same pneumococci and other bacteria. This eDNA also allows pneumococci to acquire new traits, including antibiotic resistance genes. In this study, we investigated the efficacy of lactoferrin (LF), at physiological concentrations found in secretions with bactericidal activity [i.e., colostrum (100 µM), tears (25 µM)], in eradicating pneumococcal biofilms from human respiratory cells. The efficacy of synthetic LF-derived peptides was also assessed. We first demonstrated that LF inhibited colonization of S. pneumoniae on human respiratory cells without affecting the viability of planktonic bacteria. LF-derived peptides were, however, bactericidal for planktonic pneumococci but they did not affect viability of pre-formed biofilms. In contrast, LF (40 and 80 µM) eradicated pneumococcal biofilms that had been pre-formed on abiotic surfaces (i.e., polystyrene) and on human pharyngeal cells, as investigated by viable counts and confocal microscopy. LF also eradicated biofilms formed by S. pneumoniae strains with resistance to multiple antibiotics. We investigated whether treatment with LF would affect the biofilm structure by analyzing eDNA. Surprisingly, in pneumococcal biofilms treated with LF, the eDNA was absent in comparison to the untreated control (∼10 µg/ml) or those treated with LF-derived peptides. EMSA assays showed that LF binds S. pneumoniae DNA and a time-course study of DNA decay demonstrated that the DNA is degraded when bound by LF. This LF-associated DNase activity inhibited acquisition of antibiotic resistance genes in both in vitro transformation assays and in a life-like bioreactor system. In conclusion, we demonstrated that LF eradicates pneumococcal-colonizing biofilms at a concentration safe for humans and identified a LF-associated DNAse activity that inhibited the acquisition of resistance.

5.
Biochem Cell Biol ; 95(1): 76-81, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28165291

RESUMO

Lactoferrin (LF) is a protein with antimicrobial activity, which is conferred in part by 2 regions contained in its N-terminal lobe. These regions have been used to develop the following synthetic peptides: lactoferricin17-30, lactoferrampin265-284, and LF chimera (a fusion of lactoferricin17-30 and lactoferrampin265-284). We have reported that these LF peptides have antibacterial activity against several pathogenic bacteria; however, the exact mechanism of action has not been established. Here, we report the effects of LF peptides on the viability of enteroaggregative Escherichia coli (EAEC) and the ability of these peptides to penetrate into the bacteria cytoplasm. The viability of EAEC treated with LF peptides was determined via enumeration of colony-forming units, and the binding and internalization of the LF peptides was followed via immunogold labeling and electron microscopy. Treatment of EAEC with 20 and 40 µmol/L LF peptides reduced bacterial growth compared with untreated bacteria. Initially the peptides associated with the plasma membrane, but after 5 to 30 min of incubation, the peptides were found in the cytoplasm. Remarkably, bacteria treated with LF chimera developed cytosolic electron-dense structures that contained the antimicrobial peptide. Our results suggest that the antibacterial mechanism of LF peptides on EAEC involves their interaction with and penetration into the bacteria.


Assuntos
Antibacterianos/farmacologia , Peptídeos Penetradores de Células/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Lactoferrina/farmacologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Humanos
6.
Front Microbiol ; 8: 2633, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375503

RESUMO

Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species.

7.
Biochimie ; 94(9): 1935-42, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22640957

RESUMO

Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries. It produces a characteristic intestinal histopathological lesion on enterocytes known as 'attaching and effacing' (A/E), and these two steps are mediated by a type-III secretory system. In the present study, we evaluated the effect on the initial host cell attachment step produced by bovine lactoferrin (bLF) and three synthetic peptides: lactoferricin (LFcin), lactoferrampin (LFampin) and LFchimera. A special focus was given to the hemolytic activity and EPEC-induced actin polymerization in HEp-2 cells, as well as to the espA gene expression, which produces the protein responsible for primary contact with the host cells. Results show that EPEC attachment to HEp-2 cells was significantly suppressed by bLF and LFchimera at 125 and 40 µM, respectively. EPEC-mediated actin polymerization was blocked by bLF and LFchimera at 88 and 99%, respectively. LFchimera inhibited the attachment and A/E lesion caused by EPEC in a dose-dependent manner. In the presence of 125 µM bLF, the expression level of the espA gene was decreased by 50% compared to the untreated control. LFchimera at concentrations of 20 µM and 40 µM diminished the level of espA gene expression 100 and 1000 fold, respectively (P < 0.001). Although bLF, LFchimera, LFcin, and LFampin all significantly blocked the hemolysis produced by EPEC (P < 0.001), the two former compounds produced this effect at lower concentrations. These two compounds, bLF and LFchimera, were able to inhibit the first steps of the mechanism of the damage used by EPEC. This data suggests that LFchimera could provide protection against enteropathogens that share this mechanism.


Assuntos
Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/fisiologia , Lactoferrina/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Actinas/química , Animais , Aderência Bacteriana/efeitos dos fármacos , Bovinos , Linhagem Celular , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/genética , Hemólise/efeitos dos fármacos , Humanos , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína
8.
Biometals ; 23(3): 569-78, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20195887

RESUMO

Increased prevalence of antibiotic-resistant bacteria has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and distribution in both hospital and community settings. Discovery and development of new agents to combat antibiotic-resistant bacteria is thus needed. This study therefore aimed to evaluate the ability of bovine lactoferrin (LF), peptides from two antimicrobial domains lactoferricin B (LFcin17-30) and lactoferrampin (LFampin265-284) and a chimeric construct (LFchimera) containing both peptides, as potential bactericidal agents against clinical isolates of antibiotic-resistant Staphylococcus aureus and Escherichia coli. Results in kinetics of growth show that LF chimera and peptides inhibited the growth of both bacterial species. By confocal microscopy and flow cytometry it was observed that LF and FITC-labeled peptides are able to interact with these bacteria and cause membrane permeabilization, as monitored by propidium iodide staining, these effects were decreased by preincubation with lipopolysaccharide in E. coli. By electron microscopy, a clear cellular damage was observed in bacteria after treatments with LFchimera and peptides, suggesting that interaction and membrane disruption are probably involved as a mechanism of action. In conclusion, results show that LFchimera, LF and peptides have potential as bactericidal agents in the antibiotic-resistant strains of S. aureus and E. coli and also the work strongly suggest that LFcin17-30 and LFampin265-284 acts synergistically with antibiotics against multidrug resistant EPEC and MRSA in vitro.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Lactoferrina/química , Lactoferrina/farmacologia , Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Bovinos , Testes de Sensibilidade Microbiana , Peptídeos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA