RESUMO
Rare earth bisphthalocyanines (MPc2) are of particular interest because of their behavior as single-molecular magnets, which makes them suitable for applications in molecular spintronics, high-density data storage and quantum computation. Nevertheless, MPc2 are not commercially available, and the synthesis routes are mainly focused on obtaining substituted phthalocyanines. Two preparation routes depend on the precursor: synthesis from phthalonitrile (PN) and the metalation of free or dilithium phthalocyanine (H2Pc and Li2Pc). In both options, byproducts such as free-base phthalocyanine and in the first route additional PN oligomers are generated, which influence the MPc2 yield. There are three preparation methods for these routes: heating, microwave radiation and reflux. In this research, solvothermal synthesis was applied as a new approach to prepare yttrium, lanthanum, gadolinium and terbium unsubstituted bisphthalocyanines using Li2Pc and the rare earth(III) acetylacetonates. Purification by sublimation gave high product yields compared to those reported, namely 68% for YPc2, 43% for LaPc2, 63% for GdPc2 and 62% for TbPc2, without any detectable presence of H2Pc. Characterization by infrared, Raman, ultraviolet-visible and X-ray photoelectron spectroscopy as well as elemental analysis revealed the main featuresof the four bisphthalocyanines, indicating the success of the synthesis of the complexes.
RESUMO
Unsubstituted phthalocyanines (including free-base H2Pc and many of its metal complexes) are among the most stable organic compounds. They can sublime without decomposition under reduced pressure and temperatures of up to 550 °C. This property was previously employed to design a novel approach to noncovalent functionalization of pristine single-walled carbon nanotubes (SWNTs) with 3d metal(II) phthalocyanine complexes. However, when we attempted to use the same sublimation protocol to prepare a SWNTs-H2Pc hybrid, an unexpected side effect of partial H2Pc pyrolysis was detected, phthalonitrile being a main decomposition product, under the conditions when H2Pc is supposed to be totally stable. By using density functional theory calculations, we offer an explanation for the thermal behavior of H2Pc based on its covalent attachment to the pentagonal-ring topological defects, which are very common in all graphene-derived carbon nanomaterials and capable of reacting with amines via nucleophilic addition process.