Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
bioRxiv ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39229045

RESUMO

How specific enhancer-promoter pairing is established is still mostly unclear. Besides the CTCF/cohesin machinery, only a few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Here, we show via acute degradation experiments that LDB1 directly and broadly promotes enhancer-promoter loops. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined via the use of multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1 occupied sites but may aid the formation of a subset of LDB1 anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1-phase, we establish a relationship between LDB1-dependent interactions in the context of TAD organization and gene activation. Lastly, Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. This establishes LDB1 as a direct driver of regulatory network inter-connectivity.

2.
bioRxiv ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39345388

RESUMO

As cells exit mitosis and enter G1, mitotic chromosomes decompact and transcription is reestablished. Previously, Hi-C studies showed that essentially all interphase 3D genome features including A/B-compartments, TADs, and CTCF loops, are lost during mitosis. However, Hi-C remains insensitive to features such as microcompartments, nested focal interactions between cis -regulatory elements (CREs). We therefore applied Region Capture Micro-C to cells from mitosis to G1. Unexpectedly, we observe microcompartments in prometaphase, which further strengthen in ana/telophase before gradually weakening in G1. Loss of loop extrusion through condensin depletion differentially impacts microcompartments and large A/B-compartments, suggesting that they are partially distinct. Using polymer modeling, we show that microcompartment formation is favored by chromatin compaction and disfavored by loop extrusion activity, explaining why ana/telophase likely provides a particularly favorable environment. Our results suggest that CREs exhibit intrinsic homotypic affinity leading to microcompartment formation, which may explain transient transcriptional spiking observed upon mitotic exit.

3.
Nat Genet ; 56(9): 1938-1952, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39210046

RESUMO

Few transcription factors have been examined for their direct roles in physically connecting enhancers and promoters. Here acute degradation of Yin Yang 1 (YY1) in erythroid cells revealed its requirement for the maintenance of numerous enhancer-promoter loops, but not compartments or domains. Despite its reported ability to interact with cohesin, the formation of YY1-dependent enhancer-promoter loops does not involve stalling of cohesin-mediated loop extrusion. Integrating mitosis-to-G1-phase dynamics, we observed partial retention of YY1 on mitotic chromatin, predominantly at gene promoters, followed by rapid rebinding during mitotic exit, coinciding with enhancer-promoter loop establishment. YY1 degradation during the mitosis-to-G1-phase interval revealed a set of enhancer-promoter loops that require YY1 for establishment during G1-phase entry but not for maintenance in interphase, suggesting that cell cycle stage influences YY1's architectural function. Thus, as revealed here for YY1, chromatin architectural functions of transcription factors can vary in their interplay with CTCF and cohesin as well as by cell cycle stage.


Assuntos
Proteínas Cromossômicas não Histona , Coesinas , Regiões Promotoras Genéticas , Transcrição Gênica , Fator de Transcrição YY1 , Animais , Humanos , Camundongos , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Elementos Facilitadores Genéticos , Células Eritroides/metabolismo , Células Eritroides/citologia , Fase G1/genética , Regulação da Expressão Gênica , Mitose/genética , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética
4.
Genome Res ; 34(7): 1089-1105, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38951027

RESUMO

Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state regulatory potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbor distinctive transcription factor binding motifs that are similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we show that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.


Assuntos
Epigênese Genética , Epigenoma , Especificidade da Espécie , Animais , Camundongos , Humanos , Células Sanguíneas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Regulação da Expressão Gênica , Epigenômica/métodos
5.
Nat Genet ; 56(6): 1213-1224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802567

RESUMO

During mitosis, condensin activity is thought to interfere with interphase chromatin structures. To investigate genome folding principles in the absence of chromatin loop extrusion, we codepleted condensin I and condensin II, which triggered mitotic chromosome compartmentalization in ways similar to that in interphase. However, two distinct euchromatic compartments, indistinguishable in interphase, emerged upon condensin loss with different interaction preferences and dependencies on H3K27ac. Constitutive heterochromatin gradually self-aggregated and cocompartmentalized with facultative heterochromatin, contrasting with their separation during interphase. Notably, some cis-regulatory element contacts became apparent even in the absence of CTCF/cohesin-mediated structures. Heterochromatin protein 1 (HP1) proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M to G1 phase in the combined absence of HP1α, HP1ß and HP1γ, constitutive heterochromatin compartments are normally re-established. In sum, condensin-deficient mitotic chromosomes illuminate forces of genome compartmentalization not identified in interphase cells.


Assuntos
Adenosina Trifosfatases , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Heterocromatina , Mitose , Complexos Multiproteicos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Mitose/genética , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Interfase/genética , Cromossomos/genética , Homólogo 5 da Proteína Cromobox , Cromatina/metabolismo , Cromatina/genética
6.
Blood ; 144(8): 845-852, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728575

RESUMO

ABSTRACT: It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and ß-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult ß-globin genes, such as sickle cell disease and ß-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.


Assuntos
Hemoglobina Fetal , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Animais , Anemia Falciforme/genética , Anemia Falciforme/terapia , Anemia Falciforme/metabolismo , Talassemia beta/genética , Talassemia beta/terapia , Talassemia beta/metabolismo , Eritropoese/genética , Globinas beta/genética , Globinas beta/metabolismo
7.
Blood ; 143(19): 1980-1991, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38364109

RESUMO

ABSTRACT: The switch from fetal hemoglobin (γ-globin, HBG) to adult hemoglobin (ß-globin, HBB) gene transcription in erythroid cells serves as a paradigm for a complex and clinically relevant developmental gene regulatory program. We previously identified HIC2 as a regulator of the switch by inhibiting the transcription of BCL11A, a key repressor of HBG production. HIC2 is highly expressed in fetal cells, but the mechanism of its regulation is unclear. Here we report that HIC2 developmental expression is controlled by microRNAs (miRNAs), as loss of global miRNA biogenesis through DICER1 depletion leads to upregulation of HIC2 and HBG messenger RNA. We identified the adult-expressed let-7 miRNA family as a direct posttranscriptional regulator of HIC2. Ectopic expression of let-7 in fetal cells lowered HIC2 levels, whereas inhibition of let-7 in adult erythroblasts increased HIC2 production, culminating in decommissioning of a BCL11A erythroid enhancer and reduced BCL11A transcription. HIC2 depletion in let-7-inhibited cells restored BCL11A-mediated repression of HBG. Together, these data establish that fetal hemoglobin silencing in adult erythroid cells is under the control of a miRNA-mediated inhibitory pathway (let-7 ⊣ HIC2 ⊣ BCL11A ⊣ HBG).


Assuntos
Hemoglobina Fetal , Fatores de Transcrição Kruppel-Like , MicroRNAs , Proteínas Repressoras , Humanos , Globinas beta/genética , Globinas beta/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Eritroblastos/metabolismo , Eritroblastos/citologia , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transcrição Gênica
8.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37066352

RESUMO

Knowledge of locations and activities of cis -regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our V al i dated S ystematic I ntegrati on (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.

9.
Nat Biotechnol ; 42(2): 305-315, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37095348

RESUMO

Simple, efficient and well-tolerated delivery of CRISPR genome editing systems into primary cells remains a major challenge. Here we describe an engineered Peptide-Assisted Genome Editing (PAGE) CRISPR-Cas system for rapid and robust editing of primary cells with minimal toxicity. The PAGE system requires only a 30-min incubation with a cell-penetrating Cas9 or Cas12a and a cell-penetrating endosomal escape peptide to achieve robust single and multiplex genome editing. Unlike electroporation-based methods, PAGE gene editing has low cellular toxicity and shows no significant transcriptional perturbation. We demonstrate rapid and efficient editing of primary cells, including human and mouse T cells, as well as human hematopoietic progenitor cells, with editing efficiencies upwards of 98%. PAGE provides a broadly generalizable platform for next-generation genome engineering in primary cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Animais , Camundongos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Eletroporação , Células-Tronco Hematopoéticas
10.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077058

RESUMO

Hematopoietic stem cell (HSC) transplantation using umbilical cord blood (UCB) is a potentially life-saving treatment for leukemia and bone marrow failure but is limited by the low number of HSCs in UCB. The loss of HSCs after ex vivo manipulation is also a major obstacle to gene editing for inherited blood disorders. HSCs require a low rate of translation to maintain their capacity for self-renewal, but hematopoietic cytokines used to expand HSCs stimulate protein synthesis and impair long-term self-renewal. We previously described cytokine-free conditions that maintain but do not expand human and mouse HSCs ex vivo. Here we performed a high throughput screen and identified translation inhibitors that allow ex vivo expansion of human HSCs while minimizing cytokine exposure. Transplantation assays show a ~5-fold expansion of long-term HSCs from UCB after one week of culture in low cytokine conditions. Single cell transcriptomic analysis demonstrates maintenance of HSCs expressing mediators of the unfolded protein stress response, further supporting the importance of regulated proteostasis in HSC maintenance and expansion. This expansion method maintains and expands human HSCs after CRISPR/Cas9 editing of the BCL11A+58 enhancer, overcoming a major obstacle to ex vivo gene correction for human hemoglobinopathies.

11.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014261

RESUMO

During mitosis, condensin activity interferes with interphase chromatin structures. Here, we generated condensin-free mitotic chromosomes to investigate genome folding principles. Co-depletion of condensin I and II, but neither alone, triggered mitotic chromosome compartmentalization in ways that differ from interphase. Two distinct euchromatic compartments, indistinguishable in interphase, rapidly emerged upon condensin loss with different interaction preferences and dependence on H3K27ac. Constitutive heterochromatin gradually self-aggregated and co-compartmentalized with the facultative heterochromatin, contrasting with their separation during interphase. While topologically associating domains (TADs) and CTCF/cohesin mediated structural loops remained undetectable, cis-regulatory element contacts became apparent, providing an explanation for their quick re-establishment during mitotic exit. HP1 proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M- to G1-phase in the combined absence of HP1α, HP1ß and HP1γ, re-established constitutive heterochromatin compartments normally. In sum, "clean-slate" condensing-deficient mitotic chromosomes illuminate mechanisms of genome compartmentalization not revealed in interphase cells.

12.
Proc Natl Acad Sci U S A ; 120(36): e2303859120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639593

RESUMO

Recurrent chromosomal rearrangements found in rhabdomyosarcoma (RMS) produce the PAX3-FOXO1 fusion protein, which is an oncogenic driver and a dependency in this disease. One important function of PAX3-FOXO1 is to arrest myogenic differentiation, which is linked to the ability of RMS cells to gain an unlimited proliferation potential. Here, we developed a phenotypic screening strategy for identifying factors that collaborate with PAX3-FOXO1 to block myo-differentiation in RMS. Unlike most genes evaluated in our screen, we found that loss of any of the three subunits of the Nuclear Factor Y (NF-Y) complex leads to a myo-differentiation phenotype that resembles the effect of inactivating PAX3-FOXO1. While the transcriptomes of NF-Y- and PAX3-FOXO1-deficient RMS cells bear remarkable similarity to one another, we found that these two transcription factors occupy nonoverlapping sites along the genome: NF-Y preferentially occupies promoters, whereas PAX3-FOXO1 primarily binds to distal enhancers. By integrating multiple functional approaches, we map the PAX3 promoter as the point of intersection between these two regulators. We show that NF-Y occupies CCAAT motifs present upstream of PAX3 to function as a transcriptional activator of PAX3-FOXO1 expression in RMS. These findings reveal a critical upstream role of NF-Y in the oncogenic PAX3-FOXO1 pathway, highlighting how a broadly essential transcription factor can perform tumor-specific roles in governing cellular state.


Assuntos
Rabdomiossarcoma , Fator de Ligação a CCAAT/genética , Diferenciação Celular/genética , Aberrações Cromossômicas , Rabdomiossarcoma/genética , Fatores de Transcrição
13.
Cancer Res Commun ; 3(8): 1615-1627, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37615015

RESUMO

Ewing sarcoma is a rare and deadly pediatric bone cancer for which survival rates and treatment options have stagnated for decades. Ewing sarcoma has not benefited from immunotherapy due to poor understanding of how its immune landscape is regulated. We recently reported that ubiquitin-specific protease 6 (USP6) functions as a tumor suppressor in Ewing sarcoma, and identified it as the first cell-intrinsic factor to modulate the Ewing sarcoma immune tumor microenvironment (TME). USP6 induces intratumoral infiltration and activation of multiple innate immune lineages in xenografted nude mice. Here we report that natural killer (NK) cells are essential for its tumor-inhibitory functions, as NK cell depletion reverses USP6-mediated suppression of Ewing sarcoma xenograft growth. USP6 expression in Ewing sarcoma cells directly stimulates NK cell activation and degranulation in vitro, and functions by increasing surface levels of multiple NK cell-activating ligands. USP6 also induces surface upregulation of the receptor for the apoptosis-inducing ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), providing an additional route for enhanced sensitivity to NK cell killing. Furthermore, USP6-expressing Ewing sarcoma and NK cells participate in a paracrine immunostimulatory feedforward loop, wherein IFNγ secreted by activated NK cells feeds back on USP6/Ewing sarcoma cells to induce synergistic expression of chemokines CXCL9 and CXCL10. Remarkably, expression of USP6 in subcutaneous Ewing sarcoma xenografts induces systemic activation and maturation of NK cells, and induces an abscopal response in which growth of distal tumors is inhibited, coincident with increased infiltration and activation of NK cells. This work reveals how USP6 reprograms the Ewing sarcoma TME to enhance antitumor immunity, and may be exploited for future therapeutic benefit. Significance: This study provides novel insights into the immunomodulatory functions of USP6, the only cancer cell-intrinsic factor demonstrated to regulate the immune TME in Ewing sarcoma. We demonstrate that USP6-mediated suppression of Ewing sarcoma tumorigenesis is dependent on NK cells. USP6 directly activates NK cell cytolytic function, inducing both intratumoral and systemic activation of NK cells in an Ewing sarcoma xenograft model.


Assuntos
Neoplasias Ósseas , Tumores Neuroectodérmicos Primitivos Periféricos , Sarcoma de Ewing , Humanos , Animais , Camundongos , Fator Intrínseco , Ligantes , Camundongos Nus , Fator de Indução de Apoptose , Proteases Específicas de Ubiquitina , Microambiente Tumoral , Ubiquitina Tiolesterase
15.
Mol Ther Methods Clin Dev ; 29: 483-493, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37273902

RESUMO

CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells.

16.
Curr Opin Genet Dev ; 80: 102036, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099832

RESUMO

All measurable features of higher-order chromosomal architecture undergo drastic reorganization as cells enter and exit mitosis. During mitosis, gene transcription is temporarily halted, the nuclear envelope is dismantled, and chromosomes undergo condensation. At this time, chromatin compartments, topologically associating domains (TADs), and loops that connect enhancers with promoters as well as CTCF/cohesin loops are dissolved. Upon G1 entry, genome organization is rebuilt in the daughter nuclei to resemble that of the mother nucleus. We survey recent studies that traced these features in relation to gene expression during the mitosis-to-G1-phase transition at high temporal resolution. Dissection of fluctuating architectural features informed the hierarchical relationships of chromosomal organization, the mechanisms by which they are formed, and their mutual (in-) dependence. These studies highlight the importance of considering the cell cycle dynamics for studies of chromosomal organization.


Assuntos
Cromatina , Genoma , Cromatina/genética , Genoma/genética , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Ciclo Celular/genética , Mitose/genética , Fator de Ligação a CCCTC/genética
17.
Blood ; 141(22): 2756-2770, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893455

RESUMO

The switch from fetal hemoglobin (HbF) to adult hemoglobin (HbA) is a paradigm for developmental gene expression control with relevance to sickle cell disease and ß-thalassemia. Polycomb repressive complex (PRC) proteins regulate this switch, and an inhibitor of PRC2 has entered a clinical trial for HbF activation. Yet, how PRC complexes function in this process, their target genes, and relevant subunit composition are unknown. Here, we identified the PRC1 subunit BMI1 as a novel HbF repressor. We uncovered the RNA binding proteins LIN28B, IGF2BP1, and IGF2BP3 genes as direct BMI1 targets, and demonstrate that they account for the entirety of BMI1's effect on HbF regulation. BMI1 functions as part of the canonical PRC1 (cPRC1) subcomplex as revealed by the physical and functional dissection of BMI1 protein partners. Lastly, we demonstrate that BMI1/cPRC1 acts in concert with PRC2 to repress HbF through the same target genes. Our study illuminates how PRC silences HbF, highlighting an epigenetic mechanism involved in hemoglobin switching.


Assuntos
Hemoglobina Fetal , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Hemoglobina Fetal/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
18.
Mol Cell ; 83(5): 715-730.e6, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868189

RESUMO

Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.


Assuntos
Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Animais , Camundongos , Íntrons , Diferenciação Celular , Inativação Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase
19.
Mol Ther Nucleic Acids ; 31: 452-465, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36852088

RESUMO

Transcriptional enhancers can be in physical proximity of their target genes via chromatin looping. The enhancer at the ß-globin locus (locus control region [LCR]) contacts the fetal-type (HBG) and adult-type (HBB) ß-globin genes during corresponding developmental stages. We have demonstrated previously that forcing proximity between the LCR and HBG genes in cultured adult-stage erythroid cells can activate HBG transcription. Activation of HBG expression in erythroid cells is of benefit to patients with sickle cell disease. Here, using the ß-globin locus as a model, we provide proof of concept at the organismal level that forced enhancer rewiring might present a strategy to alter gene expression for therapeutic purposes. Hematopoietic stem and progenitor cells (HSPCs) from mice bearing human ß-globin genes were transduced with lentiviral vectors expressing a synthetic transcription factor (ZF-Ldb1) that fosters LCR-HBG contacts. When engrafted into host animals, HSPCs gave rise to adult-type erythroid cells with elevated HBG expression. Vectors containing ZF-Ldb1 were optimized for activity in cultured human and rhesus macaque erythroid cells. Upon transplantation into rhesus macaques, erythroid cells from HSPCs expressing ZF-Ldb1 displayed elevated HBG production. These findings in two animal models suggest that forced redirection of gene-regulatory elements may be used to alter gene expression to treat disease.

20.
Nucleic Acids Res ; 51(4): 1674-1686, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36660822

RESUMO

ZNF410 is a highly-conserved transcription factor, remarkable in that it recognizes a 15-base pair DNA element but has just a single responsive target gene in mammalian erythroid cells. ZNF410 includes a tandem array of five zinc-fingers (ZFs), surrounded by uncharacterized N- and C-terminal regions. Unexpectedly, full-length ZNF410 has reduced DNA binding affinity, compared to that of the isolated DNA binding ZF array, both in vitro and in cells. AlphaFold predicts a partially-folded N-terminal subdomain that includes a 30-residue long helix, preceded by a hairpin loop rich in acidic (aspartate/glutamate) and serine/threonine residues. This hairpin loop is predicted by AlphaFold to lie against the DNA binding interface of the ZF array. In solution, ZNF410 is a monomer and binds to DNA with 1:1 stoichiometry. Surprisingly, the single best-fit model for the experimental small angle X-ray scattering profile, in the absence of DNA, is the original AlphaFold model with the N-terminal long-helix and the hairpin loop occupying the ZF DNA binding surface. For DNA binding, the hairpin loop presumably must be displaced. After combining biophysical, biochemical, bioinformatic and artificial intelligence-based AlphaFold analyses, we suggest that the hairpin loop mimics the structure and electrostatics of DNA, and provides an additional mechanism, supplementary to sequence specificity, of regulating ZNF410 DNA binding.


Assuntos
Fatores de Transcrição , Animais , Sequência de Aminoácidos , Inteligência Artificial , Mamíferos/genética , Ligação Proteica , Domínios Proteicos , Dedos de Zinco/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA