Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Clin Microbiol ; 61(8): e0043823, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37395662

RESUMO

Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.


Assuntos
Brucella , Ochrobactrum , Ochrobactrum/classificação , Ochrobactrum/genética , Ochrobactrum/patogenicidade , Ochrobactrum/fisiologia , Brucella/classificação , Brucella/genética , Brucella/patogenicidade , Brucella/fisiologia , Terminologia como Assunto , Filogenia , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Humanos , Infecções Oportunistas/microbiologia
2.
Microorganisms ; 10(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35630386

RESUMO

Brucellosis is a major zoonotic disease caused by Brucella species. Historically, the disease received over fifty names until it was recognized as a single entity, illustrating its protean manifestations and intricacies, traits that generated conundrums that have remained or re-emerged since they were first described. Here, we examine confusions concerning the clinical picture, serological diagnosis, and incidence of human brucellosis. We also discuss knowledge gaps and prevalent confusions about animal brucellosis, including brucellosis control strategies, the so-called confirmatory tests, and assumptions about the primary-binding assays and DNA detection methods. We describe how doubtfully characterized vaccines have failed to control brucellosis and emphasize how the requisites of controlled safety and protection experiments are generally overlooked. Finally, we briefly discuss the experience demonstrating that S19 remains the best cattle vaccine, while RB51 fails to validate its claimed properties (protection, differentiating infected and vaccinated animals (DIVA), and safety), offering a strong argument against its current widespread use. These conundrums show that knowledge dealing with brucellosis is lost, and previous experience is overlooked or misinterpreted, as illustrated in a significant number of misguided meta-analyses. In a global context of intensifying livestock breeding, such recurrent oversights threaten to increase the impact of brucellosis.

3.
Pathogens ; 11(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335701

RESUMO

The intracellular pathogens of the genus Brucella are phylogenetically close to Ochrobactrum, a diverse group of free-living bacteria with a few species occasionally infecting medically compromised patients. A group of taxonomists recently included all Ochrobactrum organisms in the genus Brucella based on global genome analyses and alleged equivalences with genera such as Mycobacterium. Here, we demonstrate that such equivalencies are incorrect because they overlook the complexities of pathogenicity. By summarizing Brucella and Ochrobactrum divergences in lifestyle, structure, physiology, population, closed versus open pangenomes, genomic traits, and pathogenicity, we show that when they are adequately understood, they are highly relevant in taxonomy and not unidimensional quantitative characters. Thus, the Ochrobactrum and Brucella differences are not limited to their assignments to different "risk-groups", a biologically (and hence, taxonomically) oversimplified description that, moreover, does not support ignoring the nomen periculosum rule, as proposed. Since the epidemiology, prophylaxis, diagnosis, and treatment are thoroughly unrelated, merging free-living Ochrobactrum organisms with highly pathogenic Brucella organisms brings evident risks for veterinarians, medical doctors, and public health authorities who confront brucellosis, a significant zoonosis worldwide. Therefore, from taxonomical and practical standpoints, the Brucella and Ochrobactrum genera must be maintained apart. Consequently, we urge researchers, culture collections, and databases to keep their canonical nomenclature.

4.
PLoS One ; 16(11): e0260288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807952

RESUMO

Bovine brucellosis induces abortion in cows, produces important economic losses, and causes a widely distributed zoonosis. Its eradication was achieved in several countries after sustained vaccination with the live attenuated Brucella abortus S19 vaccine, in combination with the slaughtering of serologically positive animals. S19 induces antibodies against the smooth lipopolysaccharide (S-LPS), making difficult the differentiation of infected from vaccinated bovines. We developed an S19 strain constitutively expressing the green fluorescent protein (S19-GFP) coded in chromosome II. The S19-GFP displays similar biological characteristics and immunogenic and protective efficacies in mice to the parental S19 strain. S19-GFP can be distinguished from S19 and B. abortus field strains by fluorescence and multiplex PCR. Twenty-five heifers were vaccinated withS19-GFP (5×109 CFU) by the subcutaneous or conjunctival routes and some boosted with GFP seven weeks thereafter. Immunized animals were followed up for over three years and tested for anti-S-LPS antibodies by both the Rose Bengal test and a competitive ELISA. Anti-GFP antibodies were detected by an indirect ELISA and Western blotting. In most cases, anti-S-LPS antibodies preceded for several weeks those against GFP. The anti-GFP antibody response was higher in the GFP boosted than in the non-boosted animals. In all cases, the anti-GFP antibodies persisted longer, or at least as long, as those against S-LPS. The drawbacks and potential advantages of using the S19-GFP vaccine for identifying vaccinated animals in infected environments are discussed.


Assuntos
Vacina contra Brucelose/análise , Brucella abortus/isolamento & purificação , Brucelose Bovina/diagnóstico , Brucelose Bovina/prevenção & controle , Proteínas de Fluorescência Verde/análise , Animais , Vacina contra Brucelose/uso terapêutico , Bovinos/microbiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Fluorescência , Proteínas de Fluorescência Verde/uso terapêutico , Camundongos , Reação em Cadeia da Polimerase Multiplex , Vacinação/veterinária
5.
Braz J Phys Ther ; 25(2): 117-134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32773288

RESUMO

OBJECTIVE: To determine the effectiveness of mechanical diagnosis and therapy (MDT) in patients with chronic low back pain (CLBP) compared to other traditional physical therapy interventions. METHODS: Randomized controlled trials investigating the effect of MDT compared to other traditional physical therapy interventions in individuals with CLBP were considered eligible. For the purpose of this review, MDT was compared to active and passive physical therapy interventions. Independent reviewers assessed the eligibility of studies, extracted data, and assessed the risk of bias. The primary outcomes investigated were pain and disability. RESULTS: Fourteen studies were included in the review. Of these, 11 provided data to be included in the meta-analyses. Our findings showed that MDT was no more effective in decreasing pain (standardized mean difference [SMD]=0.01, 95% confidence interval [CI]: -0.44, 0.46) and disability (SMD=0.08, 95% CI: -0.53, 0.68) than other active treatments. Similar results were found when comparing MDT to other passive treatments for pain (SMD=-0.39, 95% CI: -0.90, 0.11) and disability (SMD=-0.13, 95% CI: -0.29, 0.03). CONCLUSION: There is low to moderate quality evidence that MDT is not superior than other traditional physical therapy interventions in improving pain and disability in people with CLBP.


Assuntos
Dor Crônica/terapia , Dor Lombar/terapia , Pessoas com Deficiência , Humanos
7.
Front Vet Sci ; 6: 175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231665

RESUMO

Members of the genus Brucella cluster in two phylogenetic groups: classical and non-classical species. The former group is composed of Brucella species that cause disease in mammals, including humans. A Brucella species, labeled as Brucella sp. BCCN84.3, was isolated from the testes of a Saint Bernard dog suffering orchiepididymitis, in Costa Rica. Following standard microbiological methods, the bacterium was first defined as "Brucella melitensis biovar 2." Further molecular typing, identified the strain as an atypical "Brucella suis." Distinctive Brucella sp. BCCN84.3 markers, absent in other Brucella species and strains, were revealed by fatty acid methyl ester analysis, high resolution melting PCR and omp25 and omp2a/omp2b gene diversity. Analysis of multiple loci variable number of tandem repeats and whole genome sequencing demonstrated that this isolate was different from the currently described Brucella species. The smooth Brucella sp. BCCN84.3 clusters together with the classical Brucella clade and displays all the genes required for virulence. Brucella sp. BCCN84.3 is a species nova taxonomical entity displaying pathogenicity; therefore, relevant for differential diagnoses in the context of brucellosis. Considering the debate on the Brucella species concept, there is a need to describe the extant taxonomical entities of these pathogens in order to understand the dispersion and evolution.

8.
Vet Res ; 43: 29, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500859

RESUMO

Brucellosis is a zoonosis caused by Brucella species. Brucellosis research in natural hosts is often precluded by practical, economical and ethical reasons and mice are widely used. However, mice are not natural Brucella hosts and the course of murine brucellosis depends on bacterial strain virulence, dose and inoculation route as well as breed, genetic background, age, sex and physiological statu of mice. Therefore, meaningful experiments require a definition of these variables. Brucella spleen replication profiles are highly reproducible and course in four phases: i), onset or spleen colonization (first 48 h); ii), acute phase, from the third day to the time when bacteria reach maximal numbers; iii), chronic steady phase, where bacterial numbers plateaus; and iv), chronic declining phase, during which brucellae are eliminated. This pattern displays clear physiopathological signs and is sensitive to small virulence variations, making possible to assess attenuation when fully virulent bacteria are used as controls. Similarly, immunity studies using mice with known defects are possible. Mutations affecting INF-γ, TLR9, Myd88, Tγδ and TNF-ß favor Brucella replication; whereas IL-1ß, IL-18, TLR4, TLR5, TLR2, NOD1, NOD2, GM-CSF, IL/17r, Rip2, TRIF, NK or Nramp1 deficiencies have no noticeable effects. Splenomegaly development is also useful: it correlates with IFN-γ and IL-12 levels and with Brucella strain virulence. The genetic background is also important: Brucella-resistant mice (C57BL) yield lower splenic bacterial replication and less splenomegaly than susceptible breeds. When inoculum is increased, a saturating dose above which bacterial numbers per organ do not augment, is reached. Unlike many gram-negative bacteria, lethal doses are large (≥ 108 bacteria/mouse) and normally higher than the saturating dose. Persistence is a useful virulence/attenuation index and is used in vaccine (Residual Virulence) quality control. Vaccine candidates are also often tested in mice by determining splenic Brucella numbers after challenging with appropriate virulent brucellae doses at precise post-vaccination times. Since most live or killed Brucella vaccines provide some protection in mice, controls immunized with reference vaccines (S19 or Rev1) are critical. Finally, mice have been successfully used to evaluate brucellosis therapies. It is concluded that, when used properly, the mouse is a valuable brucellosis model.


Assuntos
Brucella/fisiologia , Brucella/patogenicidade , Brucelose/imunologia , Brucelose/microbiologia , Modelos Animais de Doenças , Camundongos , Animais , Brucelose/genética , Brucelose/fisiopatologia , Humanos , Virulência
9.
Emerg Infect Dis ; 14(9): 1430-3, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18760012

RESUMO

Ten striped dolphins, Stenella coeruleoalba, stranded along the Costa Rican Pacific coast, had meningoencephalitis and antibodies against Brucella spp. Brucella ceti was isolated from cerebrospinal fluid of 6 dolphins and 1 fetus. S. coeruleoalba constitutes a highly susceptible host and a potential reservoir for B. ceti transmission.


Assuntos
Brucelose/veterinária , Meningoencefalite/veterinária , Stenella , Animais , Brucella/classificação , Brucella/isolamento & purificação , Brucelose/epidemiologia , Costa Rica/epidemiologia , Feminino , Masculino , Meningoencefalite/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA