Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667924

RESUMO

The Candida auris species is a multidrug-resistant yeast capable of causing systemic and lethal infections. Its virulence and increase in outbreaks are a global concern, especially in hospitals where outbreaks are more recurrent. In many cases, monotherapy is not effective, and drug combinations are opted for. However, resistance to antifungals has increased over the years. In view of this, nanoemulsions (NEs) may represent a nanotechnology strategy in the development of new therapeutic alternatives. Therefore, this study developed a co-encapsulated nanoemulsion with amphotericin B (AmB) and micafungin (MICA) (NEMA) for the control of infections caused by C. auris. NEs were developed in previous studies. Briefly, the NEs were composed of a mixture of 10% sunflower oil and cholesterol as the oil phase (5:1), 10% Polyoxyethylene (20) cetyl ether (Brij® 58) and soy phosphatidylcholine as surfactant/co-surfactant (2:1), and 80% PBS as the aqueous phase. The in vivo assay used BALB/c mice weighing between 25 and 28 g that were immunosuppressed (CEUA/FCF/CAr n° 29/2021) and infected with Candida auris CDC B11903. The in vivo results show the surprising potentiate of the antifungal activity of the co-encapsulated drugs in NE, preventing yeast from causing infection in the lung and thymus. Biochemical assays showed a higher concentration of liver and kidney enzymes under treatment with AmB and MICAmB. In conclusion, this combination of drugs to combat the infection caused by C. auris can be considered an efficient therapeutic option, and nanoemulsions contribute to therapeutic potentiate, proving to be a promising new alternative.

2.
J Photochem Photobiol B ; 178: 545-550, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29253813

RESUMO

Bacterial resistance to available antibiotics nowadays is a global threat leading researchers around the world to study new treatment modalities for infections. Antimicrobial photodynamic therapy (aPDT) has been considered an effective and promising therapeutic alternative in this scenario. Briefly, this therapy is based on the activation of a non-toxic photosensitizing agent, known as photosensitizer (PS), by light at a specific wavelength generating cytotoxic singlet oxygen and free radicals. Virtually all studies related to aPDT involve a huge screening to identify ideal PS concentration and light dose combinations, a laborious and time-consuming process that is hardly disclosed in the literature. Herein, we describe an antimicrobial Photodynamic Therapy (aPDT) study against Enterococcus faecalis and Propionibacterium acnes employing methylene blue, chlorin-e6 or curcumin as PS. Similarities and discrepancies between the two bacterial species were pointed out in an attempt to speed up and facilitate futures studies against those clinical relevant strains. Susceptibility tests were performed by the broth microdilution method. Our results demonstrate that aPDT mediated by the three above-mentioned PS was effective in eliminating both gram-positive bacteria, although P. acnes showed remarkably higher susceptibility to aPDT when compared to E. faecalis. PS uptake assays revealed that P. acnes is 80 times more efficient than E. faecalis in internalizing all three PS molecules. Our results evidence that the cell wall structure is not a limiting feature when predicting bacterial susceptibility to aPDT treatment.


Assuntos
Anti-Infecciosos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Anti-Infecciosos/química , Clorofilídeos , Curcumina/química , Curcumina/farmacologia , Enterococcus faecalis/efeitos da radiação , Luz , Azul de Metileno/química , Azul de Metileno/farmacologia , Fármacos Fotossensibilizantes/química , Porfirinas/química , Porfirinas/farmacologia , Propionibacterium acnes/efeitos da radiação , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA