Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2388207, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39140692

RESUMO

The crystallographic structure of the FolB enzyme from Mycobacterium tuberculosis (MtFolB), complexed with its inhibitor 8-mercaptoguanine (8-MG), was elucidated at a resolution of 1.95 Å. A novel series of S8-functionalized 8-MG derivatives were synthesised and evaluated as in vitro inhibitors of dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of MtFolB. These compounds exhibited IC50 values in the submicromolar range. Evaluation of the activity for five compounds indicated their inhibition mode and inhibition constants. Molecular docking analyses were performed to determine the enzyme-inhibitor intermolecular interactions and ligand conformations upon complex formation. The inhibitory activities of all compounds against the M. tuberculosis H37Rv strain were evaluated. Compound 3e exhibited a minimum inhibitory concentration in the micromolar range. Finally, Compound 3e showed no apparent toxicity in both HepG2 and Vero cells. The findings presented herein will advance the quest for novel, specific inhibitors targeting MtFolB, an attractive molecular target for TB drug development.


Assuntos
Aldeído Liases , Antituberculosos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Antituberculosos/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Relação Estrutura-Atividade , Aldeído Liases/antagonistas & inibidores , Aldeído Liases/metabolismo , Aldeído Liases/química , Células Vero , Estrutura Molecular , Cristalografia por Raios X , Chlorocebus aethiops , Animais , Guanina/farmacologia , Guanina/química , Guanina/análogos & derivados , Guanina/síntese química , Simulação de Acoplamento Molecular , Células Hep G2 , Modelos Moleculares
2.
Methods Mol Biol ; 2836: 19-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995533

RESUMO

Genome annotation has historically ignored small open reading frames (smORFs), which encode a class of proteins shorter than 100 amino acids, collectively referred to as microproteins. This cutoff was established to avoid thousands of false positives due to limitations of pure genomics pipelines. Proteogenomics, a computational approach that combines genomics, transcriptomics, and proteomics, makes it possible to accurately identify these short sequences by overlaying different levels of omics evidence. In this chapter, we showcase the use of µProteInS, a bioinformatics pipeline developed for the identification of unannotated microproteins encoded by smORFs in bacteria. The workflow covers all the steps from quality control and transcriptome assembly to the scoring and post-processing of mass spectrometry data. Additionally, we provide an example on how to apply the pipeline's machine learning method to identify high-confidence spectra and pinpoint the most reliable identifications from large datasets.


Assuntos
Proteínas de Bactérias , Biologia Computacional , Fases de Leitura Aberta , Proteogenômica , Fluxo de Trabalho , Fases de Leitura Aberta/genética , Proteogenômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Proteômica/métodos , Aprendizado de Máquina , Bactérias/genética , Bactérias/metabolismo , Software , Espectrometria de Massas/métodos , Micropeptídeos
3.
Antonie Van Leeuwenhoek ; 117(1): 78, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740670

RESUMO

Staphylococcus aureus is the etiologic agent of many nosocomial infections, and its biofilm is frequently isolated from medical devices. Moreover, the dissemination of multidrug-resistant (MDR) strains from this pathogen, such as methicillin-resistant S. aureus (MRSA) strains, is a worldwide public health issue. The inhibition of biofilm formation can be used as a strategy to weaken bacterial resistance. Taking that into account, we analysed the ability of marine sponge-associated bacteria to produce antibiofilm molecules, and we found that marine Priestia sp., isolated from marine sponge Scopalina sp. collected on the Brazilian coast, secretes proteins that impair biofilm development from S. aureus. Partially purified proteins (PPP) secreted after 24 hours of bacterial growth promoted a 92% biofilm mass reduction and 4.0 µg/dL was the minimum concentration to significantly inhibit biofilm formation. This reduction was visually confirmed by light microscopy and Scanning Electron Microscopy (SEM). Furthermore, biochemical assays showed that the antibiofilm activity of PPP was reduced by ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline (PHEN), while it was stimulated by zinc ions, suggesting an active metallopeptidase in PPP. This result agrees with mass spectrometry (MS) identification, which indicated the presence of a metallopeptidase from the M28 family. Additionally, whole-genome sequencing analysis of Priestia sp. shows that gene ywad, a metallopeptidase-encoding gene, was present. Therefore, the results presented herein indicate that PPP secreted by the marine Priestia sp. can be explored as a potential antibiofilm agent and help to treat chronic infections.


Assuntos
Antibacterianos , Proteínas de Bactérias , Biofilmes , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Brasil , Poríferos/microbiologia
4.
ACS Med Chem Lett ; 15(4): 493-500, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38628799

RESUMO

Utilizing a scaffold-hopping strategy from the drug candidate telacebec, a novel series of 2-(quinolin-4-yloxy)acetamides was synthesized and evaluated as inhibitors of Mycobacterium tuberculosis (Mtb) growth. These compounds demonstrated potent activity against drug-sensitive and multidrug-resistant strains (MIC ≤ 0.02 µM). Leading compounds were evaluated against a known qcrB resistant strain (T313A), and their loss in activity suggested that the cytochrome bc1 complex is the likely target. Additionally, these structures showed high selectivity regarding mammalian cells (selectivity index > 500) and stability across different aqueous media. Furthermore, some of the synthesized quinolines demonstrated aqueous solubility values that exceeded those of telacebec, while maintaining low rates of metabolism. Finally, a selected compound prevented Mtb growth by more than 1.7 log10 colony forming units in a macrophage model of tuberculosis (TB) infection. These findings validate the proposed design and introduce new 2-(quinolin-4-yloxy)acetamides with potential for development in TB drug discovery campaigns.

5.
Fungal Biol ; 127(7-8): 1136-1145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495304

RESUMO

Although Metarhizium anisopliae is one of the most studied fungal biocontrol agents, its infection mechanism is far from being completely understood. Using multidimensional protein identification technology (MudPIT), we evaluated the differential secretome of M. anisopliae E6 induced by the host Rhipicephalus microplus cuticle. The proteomic result showed changes in the expression of 194 proteins after exposure to host cuticle, such as proteins involved in adhesion, penetration, stress and fungal defense. Further, we performed a comparative genomic distribution of differentially expressed proteins of the M. anisopliae secretome against another arthropod pathogen, using the Beauveria bassiana ARSEF2860 protein repertory. Among 47 analyzed protein families, thirty were overexpressed in the M. anisopliae E6 predicted genome compared to B. bassiana. An in vivo toxicity assay using a Galleria mellonella model confirmed that the M. anisopliae E6 secretome was more toxic in cattle tick infections compared to other secretomes, including B. bassiana with cattle ticks and M. anisopliae E6 with the insect Dysdereus peruvianus, which our proteomic results had also suggested. These results help explain molecular aspects associated with host infection specificity due to genetic differences and gene expression control at the protein level in arthropod-pathogenic fungi.


Assuntos
Beauveria , Metarhizium , Rhipicephalus , Animais , Metarhizium/genética , Secretoma , Especificidade de Hospedeiro , Proteômica , Controle Biológico de Vetores/métodos , Rhipicephalus/genética , Rhipicephalus/microbiologia
6.
Int Immunopharmacol ; 117: 109954, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870284

RESUMO

We analyzed the ability of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) itself and SARS-CoV-2-IgG immune complexes to trigger human monocyte necroptosis. SARS-CoV-2 was able to induce monocyte necroptosis dependently of MLKL activation. Necroptosis-associated proteins (RIPK1, RIPK3 and MLKL) were involved in SARS-CoV-2N1 gene expression in monocytes. SARS-CoV-2 immune complexes promoted monocyte necroptosis in a RIPK3- and MLKL-dependent manner, and Syk tyrosine kinase was necessary for SARS-CoV-2 immune complex-induced monocyte necroptosis, indicating the involvement of Fcγ receptors on necroptosis. Finally, we provide evidence that elevated LDH levels as a marker of lytic cell death are associated with COVID-19 pathogenesis.


Assuntos
Complexo Antígeno-Anticorpo , COVID-19 , Humanos , Complexo Antígeno-Anticorpo/metabolismo , SARS-CoV-2 , Proteínas Quinases/metabolismo , Monócitos , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
7.
J Comput Aided Mol Des ; 37(3): 117-128, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36547753

RESUMO

Tuberculosis (TB) is one of the main causes of death from a single pathological agent, Mycobacterium tuberculosis (Mtb). In addition, the emergence of drug-resistant TB strains has exacerbated even further the treatment outcome of TB patients. It is thus needed the search for new therapeutic strategies to improve the current treatment and to circumvent the resistance mechanisms of Mtb. The shikimate kinase (SK) is the fifth enzyme of the shikimate pathway, which is essential for the survival of Mtb. The shikimate pathway is absent in humans, thereby indicating SK as an attractive target for the development of anti-TB drugs. In this work, a combination of in silico and in vitro techniques was used to identify potential inhibitors for SK from Mtb (MtSK). All compounds of our in-house database (Centro de Pesquisas em Biologia Molecular e Funcional, CPBMF) were submitted to in silico toxicity analysis to evaluate the risk of hepatotoxicity. Docking experiments were performed to identify the potential inhibitors of MtSK according to the predicted binding energy. In vitro inhibitory activity of MtSK-catalyzed chemical reaction at a single compound concentration was assessed. Minimum inhibitory concentration values for in vitro growth of pan-sensitive Mtb H37Rv strain were also determined. The mixed approach implemented in this work was able to identify five compounds that inhibit both MtSK and the in vitro growth of Mtb.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Simulação de Acoplamento Molecular , Antituberculosos/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológico
8.
ACS Med Chem Lett ; 13(8): 1337-1344, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978694

RESUMO

Using cycloalkyl and electron-donating groups to decrease the carbonyl electrophilicity, a novel series of 2-(quinoline-4-yloxy)acetamides was synthesized and evaluated as in vitro inhibitors of Mycobacterium tuberculosis (Mtb) growth. Structure-activity relationship studies led to selective and potent antitubercular agents with minimum inhibitory concentrations in the submicromolar range against drug-sensitive and drug-resistant Mtb strains. An evaluation of the activity of the lead compounds against a spontaneous qcrB mutant strain indicated that the structures targeted the cytochrome bc 1 complex. In addition, selected molecules inhibited Mtb growth in a macrophage model of tuberculosis infection. Furthermore, the leading compound was chemically stable depending on the context and showed good kinetic solubility, high permeability, and a low rate of in vitro metabolism. Finally, the pharmacokinetic profile of the compound was assessed after oral administration to mice. To the best of our knowledge, for the first time, a 2-(quinoline-4-yloxy)acetamide was obtained with a sufficient exposure, which may enable in vivo effectiveness and its further development as an antituberculosis drug candidate.

9.
Braz J Microbiol ; 53(3): 1313-1319, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35778549

RESUMO

Different approaches are in use to improve our knowledge about the causative agent of coronavirus disease (COVID-19). Cell culture-based methods are the better way to perform viral isolation, evaluate viral infectivity, and amplify the virus. Furthermore, next-generation sequencing (NGS) have been essential to analyze a complete genome and to describe new viral species and lineages that have arisen over time. Four naso-oropharyngeal swab samples, collected from April to July of 2020, were isolated and sequenced aiming to produce viral stocks and analyze the mutational profile of the found lineage. B.1.1.33 was the lineage detected in all sequences. Although the samples belong to the same lineage, it was possible to evaluate different mutations found including some that were first described in these sequences, like the S:H655Y and T63N. The results described here can help to elicit how the pandemic started to spread and how it has been evolving in south Brazil.


Assuntos
COVID-19 , SARS-CoV-2 , Brasil , Genoma Viral , Humanos , Mutação , Filogenia , SARS-CoV-2/genética
10.
Bioinformatics ; 38(9): 2612-2614, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35188179

RESUMO

SUMMARY: Genome annotation pipelines traditionally exclude open reading frames (ORFs) shorter than 100 codons to avoid false identifications. However, studies have been showing that these may encode functional microproteins with meaningful biological roles. We developed µProteInS, a proteogenomics pipeline that combines genomics, transcriptomics and proteomics to identify novel microproteins in bacteria. Our pipeline employs a model to filter out low confidence spectra, to avoid the need for manually inspecting Mass Spectrometry data. It also overcomes the shortcomings of traditional approaches that usually exclude overlapping genes, leaderless transcripts and non-conserved sequences, characteristics that are common among small ORFs (smORFs) and hamper their identification. AVAILABILITY AND IMPLEMENTATION: µProteInS is implemented in Python 3.8 within an Ubuntu 20.04 environment. It is an open-source software distributed under the GNU General Public License v3, available as a command-line tool. It can be downloaded at https://github.com/Eduardo-vsouza/uproteins and either installed from source or executed as a Docker image. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteogenômica , Fases de Leitura Aberta , Proteogenômica/métodos , Software , Genômica/métodos , Bactérias/genética
11.
Int J Biol Macromol ; 199: 307-317, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35007635

RESUMO

This study aimed to develop single-step purification and immobilization processes on cellulosic supports of ß-galactosidase from Kluyveromyces sp. combined with the Cellulose-Binding Domain (CBD) tag. After 15 min of immobilization, with an enzymatic load of 150 U/gsupport, expressed activity values reached 106.88 (microcrystalline cellulose), 115.03 (alkaline nanocellulose), and 108.47 IU/g (acid nanocellulose). The derivatives produced were less sensitive to the presence of galactose in comparison with the soluble purified enzyme. Among the cations assessed (Na+, K+, Mg2+, and Ca2+), magnesium provided the highest increase in the enzymatic activity of ß-galactosidases immobilized on cellulosic supports. Supports and derivatives showed no cytotoxic effect on the investigated cell cultures (HepG2 and Vero). Derivatives showed high operational stability in the hydrolysis of milk lactose and retained from 53 to 64% of their hydrolysis capacity after 40 reuse cycles. This study obtained biocatalyzers with promising characteristics for application in the food industry. Biocatalyzers were obtained through a low-cost one-step sustainable bioprocess of purification and immobilization of a ß-galactosidase on cellulose via CBD.


Assuntos
Enzimas Imobilizadas , Lactose , Celulose , Estabilidade Enzimática , Enzimas Imobilizadas/química , Hidrólise , Lactose/química , beta-Galactosidase/química
12.
Bioresour Technol ; 345: 126497, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34883192

RESUMO

For the first time, this work reported the one-step purification and targeted immobilization process of a ß-galactosidase (Gal) with the Cellulose Binding Domain (CBD) tag, by binding it to different magnetic cellulose supports. The process efficiency after ß-galactosidase-CBD immobilization on magnetic cellulose-based supports showed values of approximately 90% for all evaluated enzymatic loads. Compared with free Gal, derivatives showed affinity values between ß-galactosidase and the substrate 1.2 × higher in the lactose hydrolysis of milk. ß-Galactosidase-CBD's oriented immobilization process on supports increased the thermal stability of the immobilized enzyme by up to 7 × . After 15 cycles of reuse, both enzyme preparations showed a relative hydrolysis percentage of 50% of lactose in milk. The oriented immobilization process developed for purifying recombinant proteins containing the CBD tag enabled the execution of both steps simultaneously and quickly and the obtention of ß-galactosidases with promising catalytic characteristics for application in the food and pharmaceutical industries.


Assuntos
Celulose , Lactose , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Hidrólise , Fenômenos Magnéticos , beta-Galactosidase/metabolismo
13.
Microbiol Spectr ; 9(3): e0000921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937164

RESUMO

The epidemiological importance of mycobacterial species is indisputable, and the necessity to find new molecules that can inhibit their growth is urgent. The shikimate pathway, required for the synthesis of important bacterial metabolites, represents a set of targets for inhibitors of Mycobacterium tuberculosis growth. The aroA-encoded 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme catalyzes the sixth step of the shikimate pathway. In this study, we combined gene disruption, gene knockdown, point mutations (D61W, R134A, E321N), and kinetic analysis to evaluate aroA gene essentiality and vulnerability of its protein product, EPSPS, from Mycolicibacterium (Mycobacterium) smegmatis (MsEPSPS). We demonstrate that aroA-deficient cells are auxotrophic for aromatic amino acids (AroAAs) and that the growth impairment observed for aroA-knockdown cells grown on defined medium can be rescued by AroAA supplementation. We also evaluated the essentiality of selected MsEPSPS residues in bacterial cells grown without AroAA supplementation. We found that the catalytic residues R134 and E321 are essential, while D61, presumably important for protein dynamics and suggested to have an indirect role in catalysis, is not essential under the growth conditions evaluated. We have also determined the catalytic efficiencies (Kcat/Km) of recombinant wild-type (WT) and mutated versions of MsEPSPS (D61W, R134A, E321N). Our results suggest that drug development efforts toward EPSPS inhibition may be ineffective if bacilli have access to external sources of AroAAs in the context of infection, which should be evaluated further. In the absence of AroAA supplementation, aroA from M. smegmatis is essential, its essentiality is dependent on MsEPSPS activity, and MsEPSPS is vulnerable. IMPORTANCE We found that cells from Mycobacterium smegmatis, a model organism safer and easier to study than the disease-causing mycobacterial species, when depleted of an enzyme from the shikimate pathway, are auxotrophic for the three aromatic amino acids (AroAAs) that serve as building blocks of cellular proteins: l-tryptophan, l-phenylalanine, and l-tyrosine. That supplementation with only AroAAs is sufficient to rescue viable cells with the shikimate pathway inactivated was unexpected, since this pathway produces an end product, chorismate, that is the starting compound of essential pathways other than the ones that produce AroAAs. The depleted enzyme, the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), catalyzes the sixth step of shikimate pathway. Depletion of this enzyme inside cells was performed by disrupting or silencing the EPSPS-encoding aroA gene. Finally, we evaluated the essentiality of specific residues from EPSPS that are important for its catalytic activity, determined with experiments of enzyme kinetics using recombinant EPSPS mutants.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Aminoácidos Aromáticos/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/enzimologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/química , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Cinética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Alinhamento de Sequência
14.
Braz J Microbiol ; 52(3): 1225-1233, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34008152

RESUMO

We studied the expression of Bacillus amyloliquefaciens transglutaminase cloned in Escherichia coli BL21(DE3)pLysS harboring the plasmid pBAD/3C/bTGase, a bicistronic expression system, in bioreactor cultivation. Batch and fed-batch controlled as DO-stat strategies were employed for the production of the recombinant enzyme. In 30 h-batch cultivations using Terrific broth (TB), 6 g/L of biomass and 3.12 U/mgprotein of transglutaminase activity were obtained. DO-stat fed-batch cultivations under the control of oxygen concentration (DO-stat) using TB as medium but fed with glucose allowed the increment in biomass formation (17.5 g/L) and enzyme activity (6.43 U/mgprotein). DO-stat fed-batch using mineral medium (M9) and fed with glucose under the same conditions produced even higher enzymatic activity (9.14 U/mgprotein). The pH effect was investigated, and the best enzymatic activity could be observed at pH 8. In all cultivations, the bicistronic system remained stable, with 100% of plasmid-bearing cells. These results show that E. coli bearing bicistronic plasmid constructs to express recombinant TGase could be cultivated in bioreactors under DO-stat fed-batch using mineral medium and it is a promising strategy in future optimizations to produce this important enzyme.


Assuntos
Escherichia coli/enzimologia , Transglutaminases/biossíntese , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/genética , Reatores Biológicos , Meios de Cultura , Escherichia coli/genética , Glucose , Plasmídeos/genética , Transglutaminases/genética
15.
J Enzyme Inhib Med Chem ; 36(1): 847-855, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33752554

RESUMO

The dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of FolB protein is required for the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and glycolaldehyde (GA) in the folate pathway. FolB protein from Mycobacterium tuberculosis (MtFolB) is essential for bacilli survival and represents an important molecular target for drug development. S8-functionalized 8-mercaptoguanine derivatives were synthesised and evaluated for inhibitory activity against MtFolB. The compounds showed IC50 values in the submicromolar range. The inhibition mode and inhibition constants were determined for compounds that exhibited the strongest inhibition. Additionally, molecular docking analyses were performed to suggest enzyme-inhibitor interactions and ligand conformations. To the best of our knowledge, this study describes the first class of MtFolB inhibitors.


Assuntos
Aldeído Liases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Guanosina/análogos & derivados , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Tionucleosídeos/farmacologia , Aldeído Liases/genética , Aldeído Liases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Guanosina/síntese química , Guanosina/química , Guanosina/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Tionucleosídeos/síntese química , Tionucleosídeos/química
16.
Molecules ; 26(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668389

RESUMO

Tuberculosis (TB) has been described as a global health crisis since the second half of the 1990s. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB in humans, is a very successful pathogen, being the main cause of death in the population among infectious agents. In 2019, it was estimated that around 10 million individuals were contaminated by this bacillus and about 1.2 million succumbed to the disease. In recent years, our research group has reported the design and synthesis of quinoline derivatives as drug candidates for the treatment of TB. These compounds have demonstrated potent and selective growth inhibition of drug-susceptible and drug-resistant Mtb strains. Herein, a new synthetic approach was established providing efficient and rapid access (15 min) to a series of 4-alkoxy-6-methoxy-2-methylquinolines using ultrasound energy. The new synthetic protocol provides a simple procedure utilizing an open vessel system that affords the target products at satisfactory yields (45-84%) and elevated purities (≥95%). The methodology allows the evaluation of a larger number of molecules in assays against the bacillus, facilitating the determination of the structure-activity relationship with a reduced environmental cost.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Quinaldinas/farmacologia , Ondas Ultrassônicas , Antituberculosos/síntese química , Antituberculosos/química , Testes de Sensibilidade Microbiana , Quinaldinas/síntese química , Quinaldinas/química
17.
Eur J Med Chem ; 209: 112859, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010635

RESUMO

Tuberculosis (TB) is one of the most fatal diseases and is responsible for the infection of millions of people around the world. Most recently, scientific frontiers have been engaged to develop new drugs that can overcome drug-resistant TB. Following this direction, using a designed scaffold based on the combination of two separate pharmacophoric groups, a series of menadione-derived selenoesters was developed with good yields. All products were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv and attractive results were observed, especially for the compounds 8a, 8c and 8f (MICs 2.1, 8.0 and 8.1 µM, respectively). In addition, 8a, 8c and 8f demonstrated potent in vitro activity against multidrug-resistant clinical isolates (CDCT-16 and CDCT-27) with promising MIC values ranging from 0.8 to 3.1 µM. Importantly, compounds 8a and 8c were found to be non-toxic against the Vero cell line. The SI value of 8a (>23.8) was found to be comparable to that of isoniazid (>22.7), which suggests the possibility of carrying out advanced studies on this derivative. Therefore, these menadione-derived selenoesters obtained as hybrid compounds represent promising new anti-tubercular agents to overcome TB multidrug resistance.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Selênio/farmacologia , Vitamina K 3/farmacologia , Animais , Antituberculosos/síntese química , Antituberculosos/química , Chlorocebus aethiops , Humanos , Modelos Moleculares , Selênio/química , Tuberculose/tratamento farmacológico , Células Vero , Vitamina K 3/análogos & derivados , Vitamina K 3/síntese química
18.
Enzyme Microb Technol ; 134: 109468, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32044021

RESUMO

Transglutaminases (TGases) are a class of transferases widely used in the food and biotechnology industries. In this work, we describe the production of recombinant Bacillus amyloliquefaciens TGase in Escherichia coli, obtaining the protein in its soluble and active form. In order to reduce TGase activity inside host cells and consequently its toxicity, we constructed a bicistronic plasmid containing the B. amyloliquefaciens TGase gene fused to the inhibitory Streptomyces caniferus prodomain. To make the enzyme active and avoid the need of prodomain removal in vitro, we also cloned the 3C protease gene into the same plasmid. After a fast single-step purification protocol, we obtained a partially purified recombinant TGase with 37 mU/mg protein activity, that crosslinked bovine serum albumin (BSA). This is the first report on the expression of B. amyloliquefaciens TGase in E. coli in its mature and active form.


Assuntos
Bacillus amyloliquefaciens/genética , Clonagem Molecular , Vetores Genéticos , Plasmídeos/genética , Transglutaminases/genética , Bacillus amyloliquefaciens/enzimologia , Escherichia coli/genética , Indústria Alimentícia , Expressão Gênica , Peptídeo Hidrolases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transglutaminases/biossíntese
19.
Theriogenology ; 144: 194-203, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978855

RESUMO

Seminal plasma (SP) contributes to sperm physiology and metabolism, prevents premature capacitation, and protects sperm against oxidative stress. In order to evaluate the impact of heat stress in the semen of tropically adapted Brangus breed and in their seminal plasma proteome, we studied the effects of scrotal insulation for 72 h. Semen samples from six bulls, between 7 and 8 years of age, were collected prior to scrotal insulation (pre-insulation), and at 4 and 11 wk after insulation. Seminal plasma samples were analyzed by 2D SDS-PAGE and liquid chromatography coupled with mass spectrometry (LC-MS/MS). Insulation caused decrease in vigour, gross and total motility after 4 wk of scrotal insult (P < 0.001). Total defects in sperm were higher after 4 wk compared to pre-insulation and 11 wk after scrotal insulation (P < 0.001). The analysis of the 2D protein profile of the SP resulted in the identification 183 unique protein spots in all gels evaluated. There was no difference in mean number of protein spots amongst time points. Eight protein spots were more abundant in SP after scrotal insulation, returning to the same expression level at 11 wk post-insulation. One spot had higher abundance at 11 wk post-insulation, and one spot had decreased abundance 4 wk after insulation. The ten protein spots with differential abundance amongst time points were identified as Seminal plasma protein PDC-109, Seminal plasma protein A3, Seminal plasma protein BSP-30 kDa, Spermadhesin-1 and Metalloproteinase inhibitor 2. The validation of these five proteins as biomarkers for thermal testicular stress in Brangus breed would allow the development of new biotechnologies that could improve bovine semen analysis in breeding systems in tropical and subtropical conditions. A close association between the identified BSP and Spermadhesin-1 was evidenced in protein-protein interaction analysis. Based on gene ontology analysis, variation in sperm function after insulation could be explained by variation in the expressed proteins in the SP. Further studies are required to verify if these proteins could be used as biomarkers for the identification of bulls with increased seminal resistance to heat stress in Brangus breed.


Assuntos
Bovinos/fisiologia , Proteoma/fisiologia , Escroto , Sêmen/fisiologia , Espermatozoides/fisiologia , Animais , Bovinos/genética , Masculino , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides
20.
World J Microbiol Biotechnol ; 36(1): 15, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31897837

RESUMO

The transglutaminases form a large family of intracellular and extracellular enzymes that catalyze cross-links between protein molecules. Transglutaminases crosslinking properties are widely applied to various industrial processes, to improve the firmness, viscosity, elasticity, and water-holding capacity of products in the food and pharmaceutical industries. However, the extremely high costs of obtaining transglutaminases from animal sources have prompted scientists to search for new sources of these enzymes. Therefore, research has been focused on producing transglutaminases by microorganisms, which may present wider scope of use, based on enzyme-specific characteristics. In this review, we present an overview of the literature addressing the origins, types, reactions, and general characterizations of this important enzyme family. A second review will deal with transglutaminases applications in the area of food industry, medicine, pharmaceuticals and biomaterials, as well as applications in the textile and leather industries.


Assuntos
Bactérias/enzimologia , Transglutaminases/genética , Transglutaminases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Indústria Farmacêutica , Indústria Alimentícia , Humanos , Família Multigênica , Indústria Têxtil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA