Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33873, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071684

RESUMO

A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.

2.
Talanta ; 204: 776-791, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357365

RESUMO

In this work, we developed a simple, comprehensive, and effective device and procedure for sample preparation based on dispersive micro-solid phase extraction (d-µ-SPE) for the simultaneous determination of 30 polycyclic aromatic compounds or PACs (including 16 polycyclic aromatic hydrocarbons (PAHs), 3 quinones, and 11 nitro-PAHs) in water samples. The extraction/preconcentration step was carried out in a customized glass device (20-250 mL) using C18 as the sorbent. A mini-UniPrep syringeless filter was used as a desorption device, which allowed one-step desorption, filtration, and injection. The main factors affecting the d-µ-SPE were optimized using the Doehlert design. The optimal d-µ-SPE conditions were 100 mg of C18, 32 min of extraction at 1000 rpm, and 20 min of sonication (at the desorption step). The limit of detection (LOD) for PAHs and nitro-PAHs ranged from 0.8 ng L-1 (phenanthrene) to 1.5 ng L-1 (indene [1,2,3-cd]pyrene) and from 300 ng L-1 (2-nitrofluorene) to 500 ng L-1 (2-nitrobiphenyl), respectively. For quinones, it varied from 1.12 µg L-1 (1,4-naphthoquinone) to 1.70 µg L-1(9,10-phenanthrenequinone). Relative recoveries ranged from 59.1% (benzo[a]pyrene) to 110% (chrysene) for most PAHs and 68.9% (2-nitrofluorene) to 124% (1-methyl-6-nitronaphthalene) for the nitro-PAHs. The recoveries for quinones ranged from 65.3% (9,10-phenanthrenequinone) to 95.3% (9,10-anthraquinone). The enrichment factor varied from 213 (Nap) to 497 (Flu), from 39 (1,4-naphthoquinone) to 254 (9,10-anthraquinone), and from 122 (2-nitrobiphenyl) to 295 (1-methyl-4-nitronaphthalene) for the PAHs, nitro-PAHs, and quinones, respectively. After validation, the procedure was successfully applied toward the determination of PACs in river and marine water samples. Low-molecular-weight PAHs were detected with high frequencies (62.5-100%) and the total PAH concentration ranged from 2.30 ng L-1 (benzo[a]pyrene) to 1070 ng L-1 (pyrene). Quinones were found at concentrations ranging from below the LOD to up to 19.8 µg L-1. The proposed procedure was thus found to be comprehensive, precise, accurate, and suitable for determination of PACs in water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA