Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(9)2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37755985

RESUMO

Foodborne mycotoxins are a significant food safety risk in developing countries. Our objective was to determine the occurrence of and exposure levels to aflatoxins (AFs) and fumonisins (FBs) in maize intended for human and animal consumption in food-insecure regions of western Honduras. Total AFs and FBs were quantified with a monoclonal antibody-based affinity spectrofluorimetric method. FBs were detected in 614/631 samples of maize destined for human consumption at 0.3 to 41 mg/kg (mean, 2.7 mg/kg). Of the 614 positive samples, 147 had FB levels exceeding the U.S. Food and Drug Administration (FDA) advisory threshold of 4.0 mg/kg. AFs were detected in 109/631 samples of maize for human consumption with concentrations between 1.0 and 490 µg/kg (mean, 10 µg/kg). AF levels in 34 samples exceeded the FDA regulatory limit (i.e., 20 µg/kg). The average probable daily intake of AFs in western Honduras ranged from 0 to 260 ng/kg body weight/day, and for FBs, the average probable daily intake ranged from 17 to 53 µg/kg body weight/day. AFs and FBs co-occurred in 106/631 samples with 60 samples containing both toxins at levels greater than the FDA regulatory levels. Samples of maize intended for animal feed had significantly higher AF (mean, 22 µg/kg) and FB (mean, 7.6 mg/kg) contamination levels than those observed in samples destined for human consumption. Thus, the maize supply chain in western Honduras is contaminated with mycotoxins at levels that pose health risks to both humans and livestock. More effective mycotoxin surveillance and implementation of effective mitigation strategies are needed to reduce mycotoxin contamination and exposure.


Assuntos
Aflatoxinas , Fumonisinas , Micotoxinas , Estados Unidos , Animais , Humanos , Zea mays , Honduras , Peso Corporal
2.
Mycotoxin Res ; 37(2): 161-168, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33751407

RESUMO

Fumonisins are a group of mycotoxins commonly associated with corn-based products and require innovative alternatives to control exposure to its toxicity. The objective of this research was to determine the effect of amylose and resistant starch on fumonisin B1 (FB1) levels in extruded corn-based products as well as the toxin bioaccessibility upon digestion. Cornmeal contaminated with FB1 (1.5 µg/g) was extruded alone or combined with high-amylose corn starch (20%, w/w). FB1 was quantified both in the unextruded and extruded products by HPLC (high-performance liquid chromatography) fluorescence detector with pre-column derivatization. Samples were then subjected to an in vitro digestion model to evaluate the stability of the interaction between FB1 and the corn matrix extruded. The addition of high-amylose corn starch further reduced the detection of FB1 (74.9%), when compared with the effect of the extrusion alone (66.0%), confirming the binding of FB1 with the macromolecules or resistant starch. The bound fumonisin was stable upon simulated gastric digestion, and the duodenal bioaccessibility of free FB1 was lower than 35% when high-amylose corn starch ingredient was used in the product. Principal component analysis (PCA) showed that high-amylose corn starch and resistant starch content influenced the reduction of FB1 and its duodenal bioaccessibility. This study for the first time shows that addition of high-amylose corn starch during extrusion is an innovative strategy to reduce FB1 release under digestive conditions, therefore useful in mitigating the exposure to this mycotoxin.


Assuntos
Fumonisinas/análise , Amido/química , Zea mays/química , Amilose/química , Bioacumulação , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Micotoxinas/análise
3.
Heliyon ; 7(12): e08506, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977400

RESUMO

In Honduras, corn is the most important staple food for the majority of the population. This high-demand crop is susceptible to biological contamination with mycotoxins, which could represent a latent hazard for consumers. To assess the incidence of aflatoxins and fumonisins in grain, masa and tortilla, and the dietary exposure to these substances among consumers, a study was conducted in four municipalities in the department of Lempira. Total aflatoxin and fumonisin content were quantified by fluorometry in 144 samples from 48 farmers. Sixty five percent of the samples were contaminated with aflatoxins with levels of 1.28-32.05, 1.15 to 12.61, and 1.01-5.98 µg/kg in grain, masa and tortilla, respectively. Fumonisins were detected in 100% of the samples at levels between 0.82 and 28.04, 0.66 and 14.36, and 0.63 and 12.04 mg/kg in grain, masa and tortilla, respectively. The reduction in aflatoxin and fumonisin contamination after processing grains into tortillas was of 83% and 52%, respectively. The difference in aflatoxin and fumonisin concentration in the three products was significant (p < 0.05). With a per capita tortilla consumption of 490 g/day, dietary exposure was estimated between 0.003 and 0.073 µg/kg bw/day for aflatoxins and 6.16 and 151.98 µg/kg bw/day for fumonisins. Therefore, the risk of exposure to mycotoxins in the evaluated communities was considered high. Mixed effect models showed that postharvest grain management and the nixtamalization process affect the incidence of mycotoxins in corn-based products.

4.
J Food Prot ; 81(5): 776-784, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29624105

RESUMO

Maize ( Zea mays) is a staple in many developing countries but is known to be prone to pest (insects, birds, and rodents) and fungal infestation. In Guatemala, mycotoxin contamination of cultivated products may occur owing to such factors as environmental conditions and the use of traditional agriculture operations. To assess the current maize conditions in Guatemala, a small-scale study was performed. Mold and insect counts and mycotoxin (aflatoxin and fumonisin) concentrations were determined on 25 farms in two townships (Chiantla and Todos Santos) of the Huehuetenango Department. Total fungal counts were 3.6 to 6.83 log CFU/g with no significant differences ( P > 0.05) across farms at different altitudes. Farms where maize was not produced but was purchased were at higher risk of fumonisin contamination, whereas local producers were mostly affected by aflatoxins. Aflatoxin was present in maize from 100% of farms at 1.0 to 85.3 ppb, and fumonisin was detected on 52% of farms at 0.4 to 31.0 ppm. Average mycotoxin consumption amounts were above the recommended maximum intake for aflatoxin in both produced and purchased maize and above the provisional maximum tolerable daily intake for fumonisin in purchased maize. Estimated daily intake was 0.01 to 0.85 µg/kg of body weight per day for aflatoxin and 2.9 to 310.0 µg/kg of body weight per day for fumonisin. An entomological analysis revealed overall 32% prevalence of Ephestia kuehniella (flour moth), 16% prevalence of Sitophilus zeamais (maize weevil), and 8% prevalence of Tribolium sp. (flour beetle) on the analyzed farms. This study highlighted poor agricultural practices used in the highlands of Guatemala. Current practices should be revised for the production of maize that is safe for consumption by the population in this region.


Assuntos
Insetos , Zea mays , Aflatoxinas/análise , Animais , Fazendas , Contaminação de Alimentos/análise , Fumonisinas/análise , Guatemala
5.
Plant Foods Hum Nutr ; 71(2): 137-44, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26984339

RESUMO

The aim of this study was to determine the physicochemical, functional and antioxidant properties of mango (MAC), pineapple (PAC) and passion fruit (PFC) co-products in order to evaluate them as ingredients for food application. Proximate composition showed low fat content (0.95-5.64 g/100 g), and high levels of dietary fiber. In pineapple and passion fruit co-products, dietary fiber represented more than 50 % of the sample. Low pH, water activity, along with high acidity indicated that these co-products would not be easily susceptible to deterioration as food ingredients. Pineapple and passion fruit co-products had significant (p < 0.05) water holding capacity (4.96 and 4.31 g water/g sample, respectively), however oil holding capacity was low (1.59-1.85 g oil/g sample) for the three matrices studied. Regarding the phenolic content, values ranged from 3.78 to 4.67 mg gallic acid equivalent/g, with MAC showing the highest content. Through high performance liquid chromatography analysis, six compounds were identified and quantified (gallic acid, p-coumaric acid, ferulic acid, caffeic acid, epicatechin, and mangiferin) in the fruit co-products. As observed for the phenolic content, the highest antioxidant activity (p < 0.05) was found in MAC when measured by both DPPH and ABTS methods. The results indicated that the fruit co-products under evaluation could be used as functional ingredient to provide dietary fiber and natural antioxidants to food products.


Assuntos
Ananas/química , Antioxidantes/análise , Fibras na Dieta/análise , Mangifera/química , Passiflora/química , Fenóis/análise , Antioxidantes/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Gorduras/análise , Indústria de Processamento de Alimentos , Frutas/química , Fenóis/isolamento & purificação
6.
Food Chem ; 163: 23-30, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24912691

RESUMO

This study characterised pineapple pomace (PP) and evaluated its application in extrusion to enhance fibre content of the final product. The pomace had low fat (0.61%) and high dietary fibre (45.22%), showing its potential for fibre enrichment of nutritionally poor products, as some extruded snacks. Results also showed low microbiological counts, water activity, and pH indicating good microbiological quality and low risk of physicochemical deterioration. During extrusion, pomace (0%, 10.5% and 21%), moisture (14%, 15% and 16%) and temperature (140 and 160°C) were evaluated. The PP addition decreased expansion and luminosity; while increasing redness of the extrudates compared to the control (0% pomace/14% moisture/140°C). When hardness, yellowness, water absorption, and bulk density were compared to the control, there was no effect (p>0.05) of 10.5% PP addition on the extrudates, indicating that, at this level, PP could be added without affecting the properties of the final extruded product.


Assuntos
Ananas/química , Fibras na Dieta/análise , Ananas/microbiologia , Cor , Manipulação de Alimentos/métodos , Frutas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA