Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Auton Neurosci ; 164(1-2): 43-50, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21724473

RESUMO

Current evidence indicates that rises in systemic levels of estrogen create in the uterus an inhibitory environment for sympathetic nerves. However, molecular insights of these changes are far from complete. We evaluated if semaphorin 3F mRNA, a sympathetic nerve repellent, was produced by the rat uterus and if its expression was modulated by estrogen. We also analyzed whether uterine nerves express the semaphorin 3F binding receptor, neuropilin-2. Uterine levels of semaphorin 3F mRNA were measured using real time reverse transcriptase-polymerase chain reaction in prepubertal rat controls and following chronic estrogen treatment. Localization of semaphorin 3F transcripts was determined by in situ hybridization and the expression of neuropilin-2 was assessed by immunohistochemistry. These studies showed that: (1) chronic estrogen treatment led to a 5-fold induction of semaphorin 3F mRNA in the immature uterus; (2) estrogen provoked a tissue-specific induction of semaphorin 3F which was particularly localized in the connective tissue that borders muscle bundles and surrounds intrauterine blood vessels; (3) two major cell-types were recognized in the areas where transcripts were concentrated, fibroblast-like cells and infiltrating eosinophil leukocytes; and (4) some delicate nerve terminal profiles present in the estrogenized uterus were immunoreactive for neuropilin-2. Temporal and spatial expression patterns of semaphorin 3F/neuropilin-2 are consistent with a possible role of this guidance cue in the remodeling of uterine sympathetic innervation by estrogen. Though correlative in its nature, these data support a model whereby semaphorin 3F, in combination with other inhibitory molecules, converts the estrogenized myometrium to an inhospitable environment for sympathetic nerves.


Assuntos
Estrogênios/fisiologia , Miométrio/inervação , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Proteínas do Tecido Nervoso/biossíntese , Fibras Simpáticas Pós-Ganglionares/metabolismo , Regulação para Cima/fisiologia , Útero/inervação , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/agonistas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Miométrio/fisiologia , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Wistar , Útero/fisiologia
2.
Cell Tissue Res ; 340(2): 287-301, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20387079

RESUMO

In order to evaluate the contribution of substrate-bound factors to the extent and patterning of the sympathetic innervation of rat uterus following estrogen treatment, superior cervical ganglion explants from neonatal and adult ovariectomized rats were cultured on tissue sections of fresh frozen uterus from adult ovariectomized rats treated with estrogen or a vehicle. The main findings were: (1) neurite growth was greatly influenced by histological features of the underlying section; (2) on myometrial sections, neurites followed the orientation of the main axis of the longitudinally sectioned muscle cells; (3) neurites showed limited growth on transversally sectioned smooth muscle; (4) neuritic patterning was unaffected by a reduction in migrating ganglionic non-neuronal cells; (5) neurite outgrowth, but not non-neural cell migration, was markedly reduced on myometrial sections from rats treated with estrogen. These results suggest that adult myometrium continues to provide signals allowing the organotypic patterning and growth of sympathetic axons, that estrogen treatment modifies myometrial substrate properties so that it is less supportive for sympathetic neurite growth, and that adult sympathetic neurons retain their ability to recognize substrate-bound cues present in the myometrium. On endometrial sections, neurites formed radially symmetric halos, which were reduced in size on estrogen-treated endometrial substrates. Thus, changes in the neuritogenic capacity of the uterus underlie plasticity in uterine sympathetic nerves, and alterations in substrate-bound factors contribute to the diminished receptivity of the estrogenized uterus to its sympathetic innervation.


Assuntos
Estrogênios/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Sistema Nervoso Simpático/metabolismo , Útero/efeitos dos fármacos , Útero/inervação , Animais , Movimento Celular/efeitos dos fármacos , Endométrio/citologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Miométrio/citologia , Miométrio/efeitos dos fármacos , Miométrio/metabolismo , Ovariectomia , Ratos , Ratos Wistar , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/efeitos dos fármacos , Útero/citologia
3.
J Anat ; 207(2): 125-34, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16050899

RESUMO

Uterine sympathetic innervation undergoes profound remodelling in response to physiological and experimental changes in the circulating levels of sex hormones. It is not known, however, whether this plasticity results from changes in the innervating neurons, the neuritogenic properties of the target tissue or both. Using densitometric immunohistochemistry, we analysed the effects of prepubertal chronic oestrogen treatment (three subcutaneous injections of 20 microg of beta-oestradiol 17-cypionate on days 25, 27 and 29 after birth), natural peripubertal transition and late pregnancy (19-20 days post coitum) on the levels of TrkA and p75 nerve growth factor receptors in uterine-projecting sympathetic neurons of the thoraco-lumbar paravertebral sympathetic chain (T7-L2) identified using the retrograde tracer Fluorogold. For comparative purposes, levels of TrkA and p75 were assessed in the superior cervical ganglion (SCG) following prepubertal chronic oestrogen treatment. These studies showed that the vast majority of uterine-projecting neurons expressed both TrkA and p75. Both prepubertal chronic oestrogen treatment and the peripubertal transition increased the ratio p75 to TrkA in uterine-projecting neurons, whereas pregnancy elicited the opposite effect. Prepubertal chronic oestrogen treatment had no effects on levels of TrkA or p75 in sympathetic neurons of the SCG. Taken together, our data suggest that neurotrophin receptor-mediated events may contribute to regulate sex hormone-induced plasticity in uterine sympathetic nerves, and are in line with the idea that, in vivo, plasticity in uterine nerves involves changes in both the target and the innervating neurons.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/química , Receptor trkA/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Sistema Nervoso Simpático/fisiologia , Útero/inervação , Animais , Estradiol/farmacologia , Feminino , Imuno-Histoquímica/métodos , Microscopia de Fluorescência , Gravidez , Ratos , Ratos Wistar , Receptor de Fator de Crescimento Neural , Receptor trkA/análise , Receptores de Fator de Crescimento Neural/análise , Maturidade Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA