Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Neuroergon ; 5: 1382919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784138

RESUMO

Introduction: Sleep-wake cycle disruption caused by shift work may lead to cardiovascular stress, which is observed as an alteration in the behavior of heart rate variability (HRV). In particular, HRV exhibits complex patterns over different time scales that help to understand the regulatory mechanisms of the autonomic nervous system, and changes in the fractality of HRV may be associated with pathological conditions, including cardiovascular disease, diabetes, or even psychological stress. The main purpose of this study is to evaluate the multifractal-multiscale structure of HRV during sleep in healthy shift and non-shift workers to identify conditions of cardiovascular stress that may be associated with shift work. Methods: The whole-sleep HRV signal was analyzed from female participants: eleven healthy shift workers and seven non-shift workers. The HRV signal was decomposed into intrinsic mode functions (IMFs) using the empirical mode decomposition method, and then the IMFs were analyzed using the multiscale-multifractal detrended fluctuation analysis (MMF-DFA) method. The MMF-DFA was applied to estimate the self-similarity coefficients, α(q, τ), considering moment orders (q) between -5 and +5 and scales (τ) between 8 and 2,048 s. Additionally, to describe the multifractality at each τ in a simple way, a multifractal index, MFI(τ), was computed. Results: Compared to non-shift workers, shift workers presented an increase in the scaling exponent, α(q, τ), at short scales (τ < 64 s) with q < 0 in the high-frequency component (IMF1, 0.15-0.4 Hz) and low-frequency components (IMF2-IMF3, 0.04-0.15 Hz), and with q> 0 in the very low frequencies (IMF4, < 0.04 Hz). In addition, at large scales (τ> 1,024 s), a decrease in α(q, τ) was observed in IMF3, suggesting an alteration in the multifractal dynamic. MFI(τ) showed an increase at small scales and a decrease at large scales in IMFs of shift workers. Conclusion: This study helps to recognize the multifractality of HRV during sleep, beyond simply looking at indices based on means and variances. This analysis helps to identify that shift workers show alterations in fractal properties, mainly on short scales. These findings suggest a disturbance in the autonomic nervous system induced by the cardiovascular stress of shift work.

2.
Med Biol Eng Comput ; 54(1): 133-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26253282

RESUMO

An analysis of the EEG signal during the B-phase and A-phases transitions of the cyclic alternating pattern (CAP) during sleep is presented. CAP is a sleep phenomenon composed by consecutive sequences of A-phases (each A-phase could belong to a possible group A1, A2 or A3) observed during the non-REM sleep. Each A-phase is separated by a B-phase which has the basal frequency of the EEG during a specific sleep stage. The patterns formed by these sequences reflect the sleep instability and consequently help to understand the sleep process. Ten recordings from healthy good sleepers were included in this study. The current study investigates complexity, statistical and frequency signal properties of electroencephalography (EEG) recordings at the transitions: B-phase--A-phase. In addition, classification between the onset-offset of the A-phases and B-phase was carried out with a kNN classifier. The results showed that EEG signal presents significant differences (p < 0.05) between A-phases and B-phase for the standard deviation, energy, sample entropy, Tsallis entropy and frequency band indices. The A-phase onset showed values of energy three times higher than B-phase at all the sleep stages. The statistical analysis of variance shows that more than 80% of the A-phase onset and offset is significantly different from the B-phase. The classification performance between onset or offset of A-phases and background showed classification values over 80% for specificity and accuracy and 70% for sensitivity. Only during the A3-phase, the classification was lower. The results suggest that neural assembles that generate the basal EEG oscillations during sleep present an over-imposed coordination for a few seconds due to the A-phases. The main characteristics for automatic separation between the onset-offset A-phase and the B-phase are the energy at the different frequency bands.


Assuntos
Sono/fisiologia , Adulto , Eletroencefalografia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA