Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829872

RESUMO

Optical microscopy videos enable experts to analyze the motion of several biological elements. Particularly in blood samples infected with Trypanosoma cruzi (T. cruzi), microscopy videos reveal a dynamic scenario where the parasites' motions are conspicuous. While parasites have self-motion, cells are inert and may assume some displacement under dynamic events, such as fluids and microscope focus adjustments. This paper analyzes the trajectory of T. cruzi and blood cells to discriminate between these elements by identifying the following motion patterns: collateral, fluctuating, and pan-tilt-zoom (PTZ). We consider two approaches: i) classification experiments for discrimination between parasites and cells; and ii) clustering experiments to identify the cell motion. We propose the trajectory step dispersion (TSD) descriptor based on standard deviation to characterize these elements, outperforming state-of-the-art descriptors. Our results confirm motion is valuable in discriminating T. cruzi of the cells. Since the parasites perform the collateral motion, their trajectory steps tend to randomness. The cells may assume fluctuating motion following a homogeneous and directional path or PTZ motion with trajectory steps in a restricted area. Thus, our findings may contribute to developing new computational tools focused on trajectory analysis, which can advance the study and medical diagnosis of Chagas disease.


Assuntos
Microscopia de Vídeo , Trypanosoma cruzi , Trypanosoma cruzi/fisiologia , Microscopia de Vídeo/métodos , Doença de Chagas/parasitologia , Humanos , Processamento de Imagem Assistida por Computador/métodos
2.
Sensors (Basel) ; 21(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372319

RESUMO

Ecological environments research helps to assess the impacts on forests and managing forests. The usage of novel software and hardware technologies enforces the solution of tasks related to this problem. In addition, the lack of connectivity for large data throughput raises the demand for edge-computing-based solutions towards this goal. Therefore, in this work, we evaluate the opportunity of using a Wearable edge AI concept in a forest environment. For this matter, we propose a new approach to the hardware/software co-design process. We also address the possibility of creating wearable edge AI, where the wireless personal and body area networks are platforms for building applications using edge AI. Finally, we evaluate a case study to test the possibility of performing an edge AI task in a wearable-based environment. Thus, in this work, we evaluate the system to achieve the desired task, the hardware resource and performance, and the network latency associated with each part of the process. Through this work, we validated both the design pattern review and case study. In the case study, the developed algorithms could classify diseased leaves with a circa 90% accuracy with the proposed technique in the field. This results can be reviewed in the laboratory with more modern models that reached up to 96% global accuracy. The system could also perform the desired tasks with a quality factor of 0.95, considering the usage of three devices. Finally, it detected a disease epicenter with an offset of circa 0.5 m in a 6 m × 6 m × 12 m space. These results enforce the usage of the proposed methods in the targeted environment and the proposed changes in the co-design pattern.


Assuntos
Algoritmos , Dispositivos Eletrônicos Vestíveis , Inteligência Artificial , Desenho de Equipamento , Humanos , Software
3.
Sci Data ; 8(1): 151, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112812

RESUMO

Amidst the current health crisis and social distancing, telemedicine has become an important part of mainstream of healthcare, and building and deploying computational tools to support screening more efficiently is an increasing medical priority. The early identification of cervical cancer precursor lesions by Pap smear test can identify candidates for subsequent treatment. However, one of the main challenges is the accuracy of the conventional method, often subject to high rates of false negative. While machine learning has been highlighted to reduce the limitations of the test, the absence of high-quality curated datasets has prevented strategies development to improve cervical cancer screening. The Center for Recognition and Inspection of Cells (CRIC) platform enables the creation of CRIC Cervix collection, currently with 400 images (1,376 × 1,020 pixels) curated from conventional Pap smears, with manual classification of 11,534 cells. This collection has the potential to advance current efforts in training and testing machine learning algorithms for the automation of tasks as part of the cytopathological analysis in the routine work of laboratories.


Assuntos
Colo do Útero/patologia , Uso da Internet , Teste de Papanicolaou , Neoplasias do Colo do Útero/patologia , Detecção Precoce de Câncer , Feminino , Humanos , Aprendizado de Máquina
4.
Diagn Cytopathol ; 49(4): 559-574, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33548162

RESUMO

BACKGROUND: Cervical cancer progresses slowly, increasing the chance of early detection of pre-neoplastic lesions via Pap exam test and subsequently preventing deaths. However, the exam presents both false-negatives and false-positives results. Therefore, automatic methods (AMs) of reading the Pap test have been used to improve the quality control of the exam. We performed a literature review to evaluate the feasibility of implementing AMs in laboratories. METHODS: This work reviewed scientific publications regarding automated cytology from the last 15 years. The terms used were "Papanicolaou test" and "Automated cytology screening" in Portuguese, English, and Spanish, in the three scientific databases (SCIELO, PUBMED, MEDLINE). RESULTS: Of the resulting 787 articles, 34 were selected for a complete review, including three AMs: ThinPrep Imaging System, FocalPoint GS Imaging System and CytoProcessor. In total, 1 317 148 cytopathological slides were evaluated automatically, with 1 308 028 (99.3%) liquid-based cytology slides and 9120 (0.7%) conventional cytology smears. The AM diagnostic performances were statistically equal to or better than those of the manual method. AM use increased the detection of cellular abnormalities and reduced false-negatives. The average sample rejection rate was ≤3.5%. CONCLUSION: AMs are relevant in quality control during the analytical phase of cervical cancer screening. This technology eliminates slide-handling steps and reduces the sample space, allowing professionals to focus on diagnostic interpretation while maintaining high-level care, which can reduce false-negatives. Further studies with conventional cytology are needed. The use of AM is still not so widespread in cytopathology laboratories.


Assuntos
Automação Laboratorial/métodos , Teste de Papanicolaou/métodos , Neoplasias do Colo do Útero/patologia , Automação Laboratorial/normas , Feminino , Humanos , Teste de Papanicolaou/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA