Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 11(6): 1274-1280, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551011

RESUMO

Synthetically derived samples of (+)-(6aS,11aS)-2,3,9-trimethoxypterocarpan [(+)-1] and its enantiomer [(-)-1], both of which are examples of naturally occurring isoflavonoids, were evaluated, together with the corresponding racemate, as cytotoxic agents against the HL-60, HCT-116, OVCAR-8, and SF-295 tumor cell lines. As a result it was established that compound (+)-1 was particularly active with OVCAR-8 cells being the most sensitive and responding in a dose-dependent manner. A study of cell viability and drug-induced morphological changes revealed the compound causes cell death through a mechanism characteristic of apoptosis. Finally, a computational study of the interactions of compound (+)-1 and (S)-monastrol, an established, synthetically derived, potent, and cell-permeant inhibitor of mitosis, with the kinesin-type protein Eg5 revealed that both bind to this receptor in a similar manner. Significantly, compound (+)-1 binds with greater affinity, an effect attributed to the presence of the associated methoxy groups.

2.
Phys Chem Chem Phys ; 17(19): 13092-103, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25915595

RESUMO

We employ quantum biochemistry methods based on the Density Functional Theory (DFT) approach to unveil the detailed binding energy features of willardiines co-crystallized with the AMPA receptor. Our computational results demonstrate that the total binding energies of fluorine-willardiine (FW), hydrogen-willardiine (HW), bromine-willardiine (BrW) and iodine-willardiine (IW) to the iGluR2 ligand-pocket correlate with the agonist binding energies, whose experimental sequential data match our computational counterpart, excluding the HW case. We find that the main contributions to the total willardiine-iGluR2 binding energy are due to the amino acid residues in decreasing order Glu705 > Arg485 > Ser654 > Tyr450 > T655. Furthermore, Met708, which is positioned close to the 5-substituent, attracts HW and FW, but repels BrW and IW. Our results contribute significantly to an improved understanding of the willardiine-iGluR2 binding mechanisms.


Assuntos
Alanina/análogos & derivados , Agonismo Parcial de Drogas , Teoria Quântica , Receptores de AMPA/agonistas , Uracila/farmacologia , Alanina/metabolismo , Alanina/farmacologia , Ligantes , Modelos Moleculares , Conformação Proteica , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Termodinâmica , Uracila/metabolismo
3.
Molecules ; 19(4): 4145-56, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24699154

RESUMO

UV-vis optical absorption spectra of the antitrypanocidal drug benznidazole solvated in water were measured for various concentrations. The spectra show a prominent peak around 3.80 eV, while deconvolution of the UV-vis optical absorption spectra revealed six bands centered at 3.60, 3.83, 4.15, 4.99, 5.60, and 5.76 eV. Benznidazole electronic transitions were obtained after density functional theory (DFT) calculations within the polarized continuum (PCM) model for water solvation. Molecular geometry optimizations were carried out, and the measured absorption peaks were related to specific molecular orbital transitions obtained within the time dependent DFT (TD-DFT) with excellent agreement between theory and experiment.


Assuntos
Nitroimidazóis/química , Tripanossomicidas/química , Teoria Quântica , Soluções , Espectrofotometria Ultravioleta , Termodinâmica , Água
4.
Phys Chem Chem Phys ; 14(4): 1389-98, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22159045

RESUMO

By taking advantage of the crystallographic data of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) complexed with statins, a quantum biochemistry study based on the density functional theory is performed to estimate the interaction energy for each statin when one considers binding pockets of different sizes. Assuming a correlation between statin potency and the strength of the total HMGR-statin binding energy, clinical data as well as IC(50) values of these cholesterol-lowering drugs are successfully explained only after stabilization of the calculated total binding energy for a larger size of the ligand-interacting HGMR region, one with a radius of at least 12.0 Å. Actually, the binding pocket radius suggested by classic works, which was based solely on the interpretation of crystallographic data of the HMGR-statin complex, is smaller than that necessary to achieve total binding energy convergence in our simulations. Atorvastatin and rosuvastatin are shown to be the most strongly bound HMGR inhibitors, while simvastatin and fluvastatin are the weakest ones. A binding site, interaction energy between residues and statin atoms, and residues domain (BIRD) panel is constructed, indicating clear quantum biochemistry-based routes for the development of new statin derivatives.


Assuntos
Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/tratamento farmacológico , Sítios de Ligação , Humanos , Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Hipercolesterolemia/enzimologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA