Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796076

RESUMO

The baculovirus Autographa californica multiple nucleopolyhedrovirus is an insect virus with a circular double-stranded DNA genome, which, among other multiple biotechnological applications, is used as an expression vector for gene delivery in mammalian cells. Nevertheless, the nonspecific immune response triggered by viral vectors often suppresses transgene expression. To understand the mechanisms involved in that response, in the present study, we studied the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway by using two approaches: the genetic edition through CRISPR/Cas9 technology of genes encoding STING or cGAS in NIH/3T3 murine fibroblasts and the infection of HEK293 and HEK293 T human epithelial cells, deficient in cGAS and in cGAS and STING expression, respectively. Overall, our results suggest the existence of two different pathways involved in the establishment of the antiviral response, both dependent on STING expression. Particularly, the cGAS-STING pathway resulted in the more relevant production of beta interferon (IFN-ß) and IFN-λ1 in response to baculovirus infection. In human epithelial cells, IFN-λ1 production was also induced in a cGAS-independent and DNA-protein kinase (DNA-PK)-dependent manner. Finally, we demonstrated that these cellular responses toward baculovirus infection affect the efficiency of transduction of baculovirus vectors.IMPORTANCE Baculoviruses are nonpathogenic viruses that infect mammals, which, among other applications, are used as vehicles for gene delivery. Here, we demonstrated that the cytosolic DNA sensor cGAS recognizes baculoviral DNA and that the cGAS-STING axis is primarily responsible for the attenuation of transduction in human and mouse cell lines through type I and type III IFNs. Furthermore, we identified DNA-dependent protein kinase (DNA-PK) as a cGAS-independent and alternative DNA cytosolic sensor that contributes less to the antiviral state in baculovirus infection in human epithelial cells than cGAS. Knowledge of the pathways involved in the response of mammalian cells to baculovirus infection will improve the use of this vector as a tool for gene therapy.


Assuntos
Baculoviridae/genética , Interferon beta/genética , Interferons/genética , Interleucinas/genética , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Animais , Baculoviridae/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , DNA Viral/genética , DNA Viral/imunologia , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Regulação da Expressão Gênica , Células HEK293 , Especificidade de Hospedeiro , Humanos , Interferon beta/imunologia , Interferons/imunologia , Interleucinas/imunologia , Proteínas de Membrana/imunologia , Camundongos , Células NIH 3T3 , Nucleotidiltransferases/imunologia , Células Sf9 , Transdução de Sinais , Spodoptera , Transdução Genética
2.
Reproduction ; 159(6): 767-778, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32240977

RESUMO

CRISPR-mediated transcriptional activation, also known as CRISPR-on, has proven efficient for activation of individual or multiple endogenous gene expression in cultured cells from several species. However, the potential of CRISPR-on technology in preimplantation mammalian embryos remains to be explored. Here, we report for the first time the successful modulation of endogenous gene expression in bovine embryos by using the CRISPR-on system. As a proof of principle, we targeted the promoter region of either SMARCA4 or TFAP2C genes, transcription factors implicated in trophoblast lineage commitment during embryo development. We demonstrate that CRISPR-on provides temporal control of endogenous gene expression in bovine embryos, by simple cytoplasmic injection of CRISPR RNA components into one cell embryos. dCas9VP160 activator was efficiently delivered and accurately translated into protein, being detected in the nucleus of all microinjected blastomeres. Our approach resulted in the activation of SMARCA expression shortly after microinjection, with a consequent effect on downstream differentiation promoting factors, such as TFAP2C and CDX2. Although targeting of TFAP2C gene did not result in a significant increase in TFAP2C expression, there was a profound induction in CDX2 expression on day 2 of development. Finally, we demonstrate that CRISPR-on system is suitable for gene expression modulation during the preimplantation period, since no detrimental effect was observed on microinjected embryo development. This study constitutes a first step toward the application of the CRISPR-on system for the study of early embryo cell fate decisions in cattle and other mammalian embryos, as well as to design novel strategies that may lead to an improved trophectoderm development.


Assuntos
DNA Helicases/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Proteínas Nucleares/metabolismo , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Bovinos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Helicases/genética , Fertilização in vitro/veterinária , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Maturação in Vitro de Oócitos/veterinária , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética
3.
J Assist Reprod Genet ; 33(10): 1405-1413, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27515309

RESUMO

PURPOSE: Crotamine is capable of penetrating cells and embryos and transfecting cells with exogenous DNA. However, no studies are available regarding its uptake by parthenogenetic (PA) embryos or its use for transfection in in vitro fertilized (IVF) embryos. This study aimed to determine the translocation kinetics of crotamine into PA and IVF bovine embryos and assess its effect over in vitro development of PA embryos. Moreover, crotamine-DNA complexes were used to test the transfection ability of crotamine in bovine IVF zygotes. METHODS: PA and IVF embryos were exposed to labeled crotamine for four interval times. Embryo toxicity was assayed over PA embryos after 24 h of exposure to crotamine. Additionally, IVF embryos were exposed to or injected with a complex formed by crotamine and pCX-EGFP plasmid. RESULTS: Confocal images revealed that crotamine was uptaken by PA and IVF embryos as soon as 1 h after exposure. Crotamine exposure did not affect two to eight cells and blastocyst rates or blastocyst cell number (p > 0.05) of PA embryos. Regarding transfection, exposure or injection into the perivitelline space with crotamine-DNA complex did not result in transgene-expressing embryos. Nevertheless, intracytoplasmic injection of plasmid alone showed higher expression rates than did injection with crotamine-DNA complex at days 4 and 7 (p < 0.05). CONCLUSIONS: Crotamine is able to translocate through zona pellucida (ZP) of PA and IVF embryos within 1 h of exposure without impairing in vitro development. However, the use of crotamine does not improve exogenous DNA expression in cattle embryos, probably due to the tight complexation of DNA with crotamine.


Assuntos
Blastocisto/citologia , Peptídeos Penetradores de Células/administração & dosagem , Venenos de Crotalídeos/administração & dosagem , Técnicas de Cultura Embrionária , Animais , Blastocisto/efeitos dos fármacos , Bovinos , Embrião de Mamíferos , Feminino , Fertilização in vitro , Partenogênese/efeitos dos fármacos , Partenogênese/genética , Zigoto
4.
PLoS One ; 9(11): e110998, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25396418

RESUMO

Embryo aggregation has been demonstrated to improve cloning efficiency in mammals. However, since no more than three embryos have been used for aggregation, the effect of using a larger number of cloned zygotes is unknown. Therefore, the goal of the present study was to determine whether increased numbers of cloned aggregated zygotes results in improved in vitro and in vivo embryo development in the equine. Zona-free reconstructed embryos (ZFRE's) were cultured in the well of the well system in four different experimental groups: I. 1x, only one ZFRE per microwell; II. 3x, three per microwell; III. 4x, four per microwell; and IV. 5x, five ZFRE's per microwell. Embryo size was measured on day 7, after which blastocysts from each experimental group were either a) maintained in culture from day 8 until day 16 to follow their growth rates, b) fixed to measure DNA fragmentation using the TUNEL assay, or c) transferred to synchronized mares. A higher blastocyst rate was observed on day 7 in the 4x group than in the 5x group. Non-aggregated embryos were smaller on day 8 compared to those aggregated, but from then on the in vitro growth was not different among experimental groups. Apoptotic cells averaged 10% of total cells of day 8 blastocysts, independently of embryo aggregation. Only pregnancies resulting from the aggregation of up to four embryos per microwell went beyond the fifth month of gestation, and two of these pregnancies, derived from experimental groups 3x and 4x, resulted in live cloned foals. In summary, we showed that the in vitro and in vivo development of cloned zona-free embryos improved until the aggregation of four zygotes and declined when five reconstructed zygotes were aggregated.


Assuntos
Clonagem de Organismos/métodos , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Cavalos/embriologia , Zigoto/crescimento & desenvolvimento , Animais , Blastocisto/citologia , Fragmentação do DNA , Técnicas de Cultura Embrionária , Marcação In Situ das Extremidades Cortadas
5.
Cell Div ; 7(1): 23, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23173571

RESUMO

BACKGROUND: Microcell-mediated chromosome transfer (MMCT) was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes. METHODS: Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 µg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 µg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+)] or not [Micronucleus- injected (-)] to a transgene (50 ng/µl pCX-EGFP) during 5 min. Enucleated oocytes [Enucleated (+)] and parthenogenetic [Parthenogenetic (+)] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/µl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (-)] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 µM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (-), Parthenogenetic (-) and in vitro fertilized (IVF) embryos were karyotyped. Differences among treatments were determined by Fisher's exact test (p≤0.05). RESULTS: All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had fewer than 15 chromosomes per blastomere (from 1 to 13), while none of the IVF and Parthenogenetic controls showed less than 30 chromosomes per spread. CONCLUSIONS: We have developed a new method to replicate somatic micronuclei, by using the replication machinery of the oocyte. This could be a useful tool for making chromosome transfer, which could be previously targeted for transgenesis.

6.
Biocell ; 35(1): 1-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21667666

RESUMO

Parthenogenetic embryos are an ethically acceptable alternative for the derivation of human embryonic stem cells. In this work, we propose a new strategy to produce bovine parthenogenetic embryos inhibiting the emission of the first polar body during in vitro maturation, and allowing the extrusion of the second polar body during oocyte activation. Cytochalasin B, an inhibitor of actin microfilaments, was employed during in vitro maturation to inhibit first polar body emission or during parthenogenetic activation to block second polar body emission. Only one polar body was inhibited in each strategy in order to keep the diploid chromosome set. In experiment 1, the effect of cytochalasin B on in vitro maturation of bovine oocytes was evaluated. Most oocytes (77%) were arrested at a meiotic stage characterized by the presence of a large internal metaphase plate and absence of polar body. In experiment 2, development of embryos exposed to cytochalasin B during in vitro maturation (CytoB-IVM) or during activation (CytoB-ACT) was compared. Developmental rates did not differ between diploidization strategies, even when three agents were employed to induce activation. Both groups, CytoB-IVM and CytoB-ACT, tended to maintain diploidy. CytoB-IVM parthenogenesis could help to obtain embryos with a higher degree of homology to the oocyte donor.


Assuntos
Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Oócitos/metabolismo , Partenogênese , Animais , Bovinos , Citocalasina B/farmacologia , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Humanos , Meiose/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Ploidias
7.
Biocell ; Biocell;35(1): 1-7, Apr. 2011. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-595004

RESUMO

Parthenogenetic embryos are an ethically acceptable alternative for the derivation of human embryonic stem cells. In this work, we propose a new strategy to produce bovine parthenogenetic embryos inhibiting the emission of the first polar body during in vitro maturation, and allowing the extrusion of the second polar body during oocyte activation. Cytochalasin B, an inhibitor of actin microfilaments, was employed during in vitro maturation to inhibit first polar body emission or during parthenogenetic activation to block second polar body emission. Only one polar body was inhibited in each strategy in order to keep the diploid chromosome set. In experiment 1, the effect of cytochalasin B on in vitro maturation of bovine oocytes was evaluated. Most oocytes (77%) were arrested at a meiotic stage characterized by the presence of a large internal metaphase plate and absence of polar body. In experiment 2, development of embryos exposed to cytochalasin B during in vitro maturation (CytoB-IVM) or during activation (CytoB-ACT) was compared. Developmental rates did not differ between diploidization strategies, even when three agents were employed to induce activation. Both groups, CytoB-IVM and CytoB-ACT, tended to maintain diploidy. CytoB-IVM parthenogenesis could help to obtain embryos with a higher degree of homology to the oocyte donor.


Assuntos
Humanos , Bovinos , Animais , Feminino , Citocalasina B/farmacologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos , Embrião de Mamíferos/fisiologia , Meiose , Oócitos/citologia , Oócitos , Oócitos/metabolismo , Partenogênese , Ploidias
8.
Transgenic Res ; 20(6): 1379-88, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21431868

RESUMO

The import of exogenous DNA (eDNA) from the cytoplasm to the nucleus represents a key intracellular obstacle for efficient gene delivery in mammalian cells. In this study, cumulus cells or oolemma vesicles previously incubated with eDNA, and naked eDNA were injected into the cytoplasm of MII oocytes to evaluate their efficiency for eDNA expressing bovine embryo production. Our study evaluated the potential of short time co-incubation (5 min) of eDNA with; (1) cumulus cells, to be used as donor cells for SCNT and (2) oolemma vesicles (vesicles) to produce parthenogenic transgene expressing embryos. In addition, we included a group consisting of the injection of eDNA alone (plasmid) followed by parthenogenic activation. Two different pCX-EGFP plasmid concentrations (50 and 500 ng/µl) were employed. The results showed that embryos produced by SCNT and by vesicle injection assisted by chemical activation were able to express the eDNA in higher rates than embryos injected with plasmid alone. The lower plasmid concentration allowed the highest development rates in all groups. Using confocal microscopy, we analyzed the interaction of FITC- labeled eDNA with cumulus cells and vesicles as well as oocytes injected with labeled plasmid alone. Our images demonstrated that eDNA interacted with cumulus cells and vesicles, resulting an increase in its expression efficiency. In contrast, oocytes injected with DNA alone did not show signs of transgene accumulation, and their eDNA expression rates were lower. In a further experiment, we evaluated if transgene-expressing embryos could be produced by means of vesicle injection followed by IVF. The lower plasmid concentration (50 ng/µl) injected after IVF, produced the best results. Preliminary FISH analysis indicated detectable integration events in 1/5 of SCNT blastocysts treated. Our studies demonstrate for the first time that short term transgene co-incubation with somatic cells can produce transgene-expressing mammalian SCNT embryos and also that parthenogenic, eDNA- expressing embryos can be obtained by injection of vesicles or eDNA alone. Moreover, eDNA-expressing embryos can be also obtained by cytoplasmic injection vesicles in IVF zygotes, simplifying the traditional IVF pronuclear injection technique.


Assuntos
Técnicas de Cultura Embrionária/métodos , Fertilização in vitro/métodos , Perfilação da Expressão Gênica/métodos , Técnicas de Transferência de Genes , Partenogênese , Animais , Bovinos , Meios de Cultura/metabolismo , Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , DNA/genética , DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização in Situ Fluorescente , Ionomicina/farmacologia , Microinjeções , Microscopia Confocal , Técnicas de Transferência Nuclear , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Fatores de Tempo
9.
Acta sci. vet. (Impr.) ; 39(suppl.1): s285-s293, 2011. ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1412831

RESUMO

Background: Intracytoplasmic sperm injection (ICSI) involves mechanical transfer of a single sperm cell into ooplasm. A new application has been recently found for ICSI, the production of transgenic animals. Since the birth of ''Dolly'', the first adult somatic cloned mammal, viable offspring has been produced by nuclear transfer in many species including cattle. The present review briefly summarizes our experience with ICSI and somatic cell nuclear transfer mainly to produce transgenic embryos, as well as for the generation of new micromanipulation technique. Review: We have evaluated different factors that affect SCNT and transgenesis including the chemical activator, the transfection event and the effect of recloning. Also, we included a brief description of the ICSI technique, which we used in five different species, examining its potential to produce transgenic embryos. Finally different strategies to produce transgenic animals were analyzed: ICSI- mediated gen transfer (ICSI-MGT), Injection of cumulus cell and ooplasmic vesicle incubated for 5 min with the transgene or injection of the plasmid alone. All of them were very efficient in exogenous DNA expression at embryo stages but resulted in mosaic embryos. We demonstrated that "ICSI-MGT" assisted by chemical activation is the only treatment of sperm mediated gen transfer capable to generated transgenic embryos in ovine. Besides, after ICSI-MGT, it is possible to obtain enhanced green fluorescent protein (EGFP)-expressing embryos in five diferent species: ovine, porcine, feline, bovine and equine. Our studies also established for the first time that short term transgene co-incubation with somatic cells can produce transgene-expressing mammalian SCNT embryos, and also that parthenogenic, eDNA- expressing embryos can be obtained by injection of vesicles or eDNA alone. Moreover, eDNA- -expressing embryos can be also obtained by cytoplasmic injection of vesicles in IVF zygotes, simplifying the traditional IVF pronuclear injection technique. We tried a further simplification of the technique in bovine oocytes and zygotes, by intracytoplasmically injecting them with eDNA-liposomes complexes. Approximately 70% of the cleaved embryos and 50% of the blastocysts expressed EGFP, when egfp­liposome was injected 16 h post-fertilization. Different approaches were assayed to reverse the mosaicism including a novel technique of gamete cloning. Our first approach consisted of the production of transgenic IVF embryos by vesicle microinjection to generate transgenic blastomeres to be used as donor cells for cloning. A high efficiency in mosaicism reversal and multiplication of transgenic embryos was attaineded. Other technique assayed was the separation of transgenic blastomeres followed by the aggregation of two-cell fused embryos or by the asynchronous younger blastomere successfully multiplied transgenic embryos, and theoretically reduces mosaicism rates in future offspring [15]. This technology can also be used to multiply embryos from animals with high genetic value. We demonstrated that a sperm and oocyte can be efficiently cloned. Green haploid androgenic blastomeres produced with the injection of a single sperm by egfp ICSI-MGT could be used to fertilized oocytes resulting in several homogeneous expressing embryos. This approach shows great potential because it allows for determination of the sex of the sperm nucleus prior to fertilization. It is also possible to clone previously transfected oocytes followed by the reconstruction of biparental bovine embryos to generate homogeneous transgene-expressing embryos. This review summarizes recent experiments in micromanipulation and gene transfer in domestic animals. The objective is not to exhaustedly describe the research done in this field but to present the promising methods recently developed or evaluated in our lab. Conclusion: Significant advancements have been made in the course of the recent years in micromanipulation and transgenesis techniques. In our lab we have been evaluating ICSI and Nuclear transfer mainly to produce transgenic embryos. We used also transgensis to apply or developed new micromanipulation technique in domestic animals linke sperm and oocyte cloning.


Assuntos
Animais , Transgenes , Injeções de Esperma Intracitoplásmicas/veterinária , Micromanipulação/tendências , Micromanipulação/veterinária , Técnicas de Transferência Nuclear/veterinária
10.
Cell Reprogram ; 12(4): 491-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20698787

RESUMO

In this work, Dehydroleucodine (DhL) was evaluated as a chemical activator of bovine oocytes and somatic cell nuclear transfer (SCNT) reconstituted embryos. Oocytes were activated with 5 microM Ionomycin (Io) and exposed for 3 h to 1 or 5 microM DhL alone (Io-Dhl1 or Io-DhL5) or combined with Cytochalasin B (Io-DhL1/CB; Io-DhL5/CB). Control groups were Io (Io), Io followed by 1.9 mM 6-Dimethylaminopurine (Io-6DMAP), and embryos produced by in vitro fertilization (IVF). Pronuclear formation and development to blastocysts of activated oocytes were evaluated. Embryos obtained by the DhL concentration that induced the highest blastocyst rates (1 microM) were karyotyped. An additional treatment based in Io-DhL1 plus lengthened (6-h) exposure to CB (Io-DhL1/long CB) was included to improve the proportion of diploid blastomeres. Finally, DhL combined with CB was employed to assist cloning by intracytoplasmic injection of whole cumulus cells. Results showed that DhL induces a pronuclear formation dynamic that was more similar to IVF-produced embryos than DMAP. Development to blastocyst stage was higher after activation with 1 microM DhL than with 5 microM DhL, either for groups combined or not with CB (19.15; 21.74 vs. 6.82; 0%, respectively) (p < 0.05). Io-DhL1 and Io-DhL1/CB treatments induced blastocyst-cleaved embryo ratios not statistically different from those of Io-DMAP (35.85%) and IVF (33.33%) groups (p > 0.05). Io-DhL1/long CB induced higher diploid blastomere rates than Io-Dhl1, Io-DhL1/CB and Io-DMAP (63.8 vs. 36.8; 40 and 31.6%, respectively) (p < 0.05). Moreover, all DhL treatments resulted in polyploidy rates that were lower than Io-DMAP (5.2, 12.0, 10.6, and 31.6%, respectively) (p < 0.05). Io-DhL1/CB and Io-DhL1/long CB induced cloned embryo blastocyst rates that were not significantly different from Io-DMAP (6.1, 9.4, and 18.3%, respectively) (p < 0.05). Our results indicate that Io-DhL1/long CB protocol could be useful for SCNT programs.


Assuntos
Bovinos/embriologia , Núcleo Celular/fisiologia , Citocalasina B/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Ionomicina/farmacologia , Lactonas/farmacologia , Oócitos/efeitos dos fármacos , Partenogênese/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Blastocisto/efeitos dos fármacos , Células Cultivadas , Clonagem de Organismos , Feminino , Fertilização in vitro , Ionóforos/farmacologia , Técnicas de Transferência Nuclear
11.
Theriogenology ; 74(6): 922-31, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20570328

RESUMO

In order to establish conditions for intracytoplasmic sperm injection-mediated gene transfer (ICSI-MGT) in cattle, various aspects of fertilization and embryonic development were assessed after five activation treatments. Spermatozoa were co-incubated with pCX-EGFP (pCX-enhanced green fluorescent protein gene) plasmid and injected into metaphase II oocytes, which were then treated with ionomycin (Io), before further activation with the following agents: 6-dimethylaminopurine (Io-DMAP), additional Io plus DMAP (2Io-DMAP), Io alone (2Io), ethanol (Io-EtOH), or strontium chloride (Io-SrCl2). Fertilization rates at 16 h after ICSI, presence of a condensed spermatozoon head on Day 4 (Day 0 = ICSI), blastocyst and EGFP expression rates on Day 7, and Oct-4 pattern of Day 8 blastocysts were evaluated. Fertilization rates did not differ significantly among treatments. All (100%) of EGFP-positive embryos resulted from ICSI fertilization, whereas at least 60% of EGFP-negative embryos (>4 cells) had a condensed sperm head. Blastocyst rates after 2Io-DMAP were not significantly different from Io-DMAP or Io-EtOH, but they were higher than 2Io or Io-SrCl2 treatments (25.9, 18.7, 14.7, 9.4, and 10.9% respectively; P < 0.05). Transgene expression rates were higher for Io-DMAP, 2Io-DMAP and Io-SrCl2 than for 2Io and Io-EtOH (52.3, 53.0, 42.8, 28.2, and 29.4% respectively; P < 0.05). Over 80% of the blastocysts expressed egfp protein. In conclusion, ICSI-MGT was a powerful technique to produce bovine embryos that expressed the EGFP transgene. Moreover, the actual efficiency of ICSI-MGT could be readily evaluated by this method, which uses a marker expressed early in embryo development.


Assuntos
Blastocisto/citologia , Desenvolvimento Embrionário , Técnicas de Transferência de Genes/veterinária , Injeções de Esperma Intracitoplásmicas/veterinária , Animais , Animais Geneticamente Modificados , Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Bovinos , Contagem de Células , Células Cultivadas , Técnicas de Cultura Embrionária , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Ionomicina/farmacologia , Ionóforos/farmacologia , Masculino , Estimulação Química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA