Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(8): e0172123, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38990013

RESUMO

The use of ß-lactam/ß-lactamase inhibitors constitutes an important strategy to counteract ß-lactamases in multidrug-resistant (MDR) Gram-negative bacteria. Recent reports have described ceftazidime-/avibactam-resistant isolates producing CTX-M variants with different amino acid substitutions (e.g., P167S, L169Q, and S130G). Relebactam (REL) combined with imipenem has proved very effective against Enterobacterales producing ESBLs, serine-carbapenemases, and AmpCs. Herein, we evaluated the inhibitory efficacy of REL against CTX-M-96, a CTX-M-15-type variant. The CTX-M-96 structure was obtained in complex with REL at 1.03 Å resolution (PDB 8EHH). REL was covalently bound to the S70-Oγ atom upon cleavage of the C7-N6 bond. Compared with apo CTX-M-96, binding of REL forces a slight displacement of the deacylating water inwards the active site (0.81 Å), making the E166 and N170 side chains shift to create a proper hydrogen bonding network. Binding of REL also disturbs the hydrophobic patch formed by Y105, P107, and Y129, likely due to the piperidine ring of REL that creates clashes with these residues. Also, a remarkable change in the positioning of the N104 sidechain is also affected by the piperidine ring. Therefore, differences in the kinetic behavior of REL against class A ß-lactamases seem to rely, at least in part, on differences in the residues being involved in the association and stabilization of the inhibitor before hydrolysis. Our data provide the biochemical and structural basis for REL effectiveness against CTX-M-producing Gram-negative pathogens and essential details for further DBO design. Imipenem/REL remains an important choice for dealing with isolates co-producing CTX-M with other ß-lactamases.


Assuntos
Compostos Azabicíclicos , Inibidores de beta-Lactamases , beta-Lactamases , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/química , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Cristalografia por Raios X , Antibacterianos/farmacologia , Imipenem/farmacologia , Imipenem/química , Ceftazidima/farmacologia , Testes de Sensibilidade Microbiana , Domínio Catalítico
2.
Artigo em Inglês | MEDLINE | ID: mdl-30348667

RESUMO

Carbapenems are "last resort" ß-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-ß-lactamases (MßLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all ß-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MßLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MßLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different ß-lactams in all MßLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MßLs.


Assuntos
Antibacterianos/química , Ceftazidima/química , Imipenem/química , Meropeném/química , Zinco/química , beta-Lactamases/química , Sequência de Aminoácidos , Antibacterianos/metabolismo , Domínio Catalítico , Cefepima/química , Cefepima/metabolismo , Cefotaxima/química , Cefotaxima/metabolismo , Ceftazidima/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Imipenem/metabolismo , Cinética , Meropeném/metabolismo , Modelos Moleculares , Piperacilina/química , Piperacilina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Zinco/metabolismo , Resistência beta-Lactâmica , beta-Lactamases/genética , beta-Lactamases/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-29038264

RESUMO

Carbapenem-resistant Enterobacteriaceae (CRE) are rapidly spreading and taking a staggering toll on all health care systems, largely due to the dissemination of genes coding for potent carbapenemases. An important family of carbapenemases are the Zn(II)-dependent ß-lactamases, known as metallo-ß-lactamases (MBLs). Among them, the New Delhi metallo-ß-lactamase (NDM) has experienced the fastest and widest geographical spread. While other clinically important MBLs are soluble periplasmic enzymes, NDMs are lipoproteins anchored to the outer membrane in Gram-negative bacteria. This unique cellular localization endows NDMs with enhanced stability upon the Zn(II) starvation elicited by the immune system response at the sites of infection. Since the first report of NDM-1, new allelic variants (16 in total) have been identified in clinical isolates differing by a limited number of substitutions. Here, we show that these variants have evolved by accumulating mutations that enhance their stability or the Zn(II) binding affinity in vivo, overriding the most common evolutionary pressure acting on catalytic efficiency. We identified the ubiquitous substitution M154L as responsible for improving the Zn(II) binding capabilities of the NDM variants. These results also reveal that Zn(II) deprivation imposes a strict constraint on the evolution of this MBL, overriding the most common pressures acting on catalytic performance, and shed light on possible inhibitory strategies.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Zinco/metabolismo , beta-Lactamases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana/métodos , beta-Lactamases/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-28348157

RESUMO

PER ß-lactamases are an emerging family of extended-spectrum ß-lactamases (ESBL) found in Gram-negative bacteria. PER ß-lactamases are unique among class A enzymes as they possess an inverted omega (Ω) loop and extended B3 ß-strand. These singular structural features are hypothesized to contribute to their hydrolytic profile against oxyimino-cephalosporins (e.g., cefotaxime and ceftazidime). Here, we tested the ability of avibactam (AVI), a novel non-ß-lactam ß-lactamase inhibitor to inactivate PER-2. Interestingly, the PER-2 inhibition constants (i.e., k2/K = 2 × 103 ± 0.1 × 103 M-1 s-1, where k2 is the rate constant for acylation (carbamylation) and K is the equilibrium constant) that were obtained when AVI was tested were reminiscent of values observed testing the inhibition by AVI of class C and D ß-lactamases (i.e., k2/K range of ≈103 M-1 s-1) and not class A ß-lactamases (i.e., k2/K range, 104 to 105 M-1 s-1). Once AVI was bound, a stable complex with PER-2 was observed via mass spectrometry (e.g., 31,389 ± 3 atomic mass units [amu] → 31,604 ± 3 amu for 24 h). Molecular modeling of PER-2 with AVI showed that the carbonyl of AVI was located in the oxyanion hole of the ß-lactamase and that the sulfate of AVI formed interactions with the ß-lactam carboxylate binding site of the PER-2 ß-lactamase (R220 and T237). However, hydrophobic patches near the PER-2 active site (by Ser70 and B3-B4 ß-strands) were observed and may affect the binding of necessary catalytic water molecules, thus slowing acylation (k2/K) of AVI onto PER-2. Similar electrostatics and hydrophobicity of the active site were also observed between OXA-48 and PER-2, while CTX-M-15 was more hydrophilic. To demonstrate the ability of AVI to overcome the enhanced cephalosporinase activity of PER-2 ß-lactamase, we tested different ß-lactam-AVI combinations. By lowering MICs to ≤2 mg/liter, the ceftaroline-AVI combination could represent a favorable therapeutic option against Enterobacteriaceae expressing blaPER-2 Our studies define the inactivation of the PER-2 ESBL by AVI and suggest that the biophysical properties of the active site contribute to determining the efficiency of inactivation.


Assuntos
Compostos Azabicíclicos/farmacologia , beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA