Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecology ; 100(11): e02863, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31398280

RESUMO

In 2014, a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, biological invasions, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 yr. We do not agree with the subjective arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of both the objective phylogenetic insights and of the subjective formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider that the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina.


Assuntos
Poaceae , Filogenia
2.
Ecology ; 97(3): 640-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27197391

RESUMO

Many ecosystems, even in protected areas, experience multiple anthropogenic impacts. While anthropogenic modification of bottom-up (e.g., eutrophication) and top-down (e.g., livestock grazing) forcing often co-occurs, whether these factors counteract or have additive or synergistic effects on ecosystems is poorly understood. In a Chilean bio-reserve, we examined the interactive impacts of eutrophication and illegal livestock grazing on plant growth with a 4-yr fertilization by cattle exclusion experiment. Cattle grazing generally decreased plant biomass, but had synergistic, additive, and antagonistic interactions with fertilization in the low, middle, and high marsh zones, respectively. In the low marsh, fertilization increased plant biomass by 112%, cattle grazing decreased it by 96%, and together they decreased plant biomass by 77%. In the middle marsh, fertilization increased plant biomass by 47%, cattle grazing decreased it by 37%, and together they did not affect plant biomass. In the high marsh, fertilization and cattle grazing decreased plant biomass by 81% and 92%, respectively, but together they increased plant biomass by 42%. These interactions were also found to be species specific. Different responses of plants to fertilization and cattle grazing were likely responsible for these variable interactions. Thus, common bottom-up and top-down human impacts can interact in different ways to affect communities even within a single ecosystem. Incorporating this knowledge into conservation actions will improve ecosystem management in a time when ecosystems are increasingly challenged by multiple interacting human impacts.


Assuntos
Bovinos , Conservação dos Recursos Naturais , Plantas/classificação , Áreas Alagadas , Agricultura , Animais , Biomassa , Chile , Fertilizantes , Humanos
3.
PLoS One ; 6(10): e24502, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022356

RESUMO

BACKGROUND: Understanding the factors that generate and maintain biodiversity is a central goal in ecology. While positive species interactions (i.e., facilitation) have historically been underemphasized in ecological research, they are increasingly recognized as playing important roles in the evolution and maintenance of biodiversity. Dominant habitat-forming species (foundation species) buffer environmental conditions and can therefore facilitate myriad associated species. Theory predicts that facilitation will be the dominant community-structuring force under harsh environmental conditions, where organisms depend on shelter for survival and predation is diminished. Wind-swept, arid Patagonian rocky shores are one of the most desiccating intertidal rocky shores ever studied, providing an opportunity to test this theory and elucidate the context-dependency of facilitation. METHODOLOGY/PRINCIPAL FINDINGS: Surveys across 2100 km of southern Argentinean coastline and experimental manipulations both supported theoretical predictions, with 43 out of 46 species in the animal assemblage obligated to living within the matrices of mussels for protection from potentially lethal desiccation stress and predators having no detectable impact on diversity. CONCLUSIONS/SIGNIFICANCE: These results provide the first experimental support of long-standing theoretical predictions and reveal that in extreme climates, maintenance of whole-community diversity can be maintained by positive interactions that ameliorate physical stress. These findings have important conservation implications and emphasize that preserving foundation species should be a priority in remediating the biodiversity consequences of global climate change.


Assuntos
Biota , Sedimentos Geológicos , Água do Mar , Animais , Argentina , Bivalves/fisiologia , Clima , Coleta de Dados , Dessecação , Comportamento Predatório , Estresse Fisiológico , Movimentos da Água
4.
Oecologia ; 166(4): 1111-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21394518

RESUMO

Permeability of boundaries in biological systems is regulated by biotic and/or abiotic factors. Despite this knowledge, the role of biotic factors in regulating resource transfer across ecosystem boundaries has received little study. Additionally, little is known about how cross-ecosystem resource transfer affects source populations. We used experiments, observations and stable isotopes, to evaluate: (1) the proportion of intertidal-foraging black fire ant (Solenopsis richteri) diet derived from marine sources, (2) how black fire ant cross-ecosystem resource transfer is altered by the dominant bioengineer in the intertidal, a burrowing crab (Neohelice granulata), (3) the top-down impact of these terrestrial ants on a marine resource, and (4) the effect of marine resources on recipient black fire ants. We found that more than 85% of the black fire ant diet is derived from marine sources, the number of intertidal foraging ants doubles in the absence of crab burrows, and that ants cause a 50% reduction in intertidal polychaetes. Also, ant mound density is three times greater adjacent to marine systems. This study reveals that cross-ecosystem foraging terrestrial ants can clearly have strong impacts on marine resources. Furthermore, ecosystem engineers that modify and occupy habitat in these ecosystem boundaries can strongly regulate the degree of cross-ecosystem resource transfer and resultant top down impacts.


Assuntos
Formigas , Braquiúros , Ecossistema , Comportamento Alimentar , Animais , Organismos Aquáticos , Argentina , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Poliquetos , Densidade Demográfica
5.
Ecol Appl ; 19(2): 413-22, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19323199

RESUMO

We experimentally examined plant zonation in a previously unstudied Chilean salt marsh system to test the generality of mechanisms generating zonation of plants across intertidal stress gradients. Vertical zonation in this system is striking. The low-lying clonal succulent, Sarcocornia fruticosa, dominates the daily flooded low marsh, while intermediate elevations are dominated by the much taller Spartina densiflora. Irregularly flooded higher elevations are dominated by Schoenoplectus californicus, with the small forb, Selliera radicans, found associated with Schoenoplectus at its base. Transplant studies of all four species into each zone both with and without competition revealed the mechanisms driving these striking patterns in plant segregation. In the regularly flooded low marsh, Sarcocornia and Spartina grow in the zone that they normally dominate and are displaced when reciprocally transplanted between zones with neighbors, but without neighbors they grow well in each other's zone. Thus, interspecific competition alone generates low marsh zonation as in some mediterranean marshes, but differently than most of the Californian marshes where physical stress is the dominant factor. In contrast, mechanisms generating high marsh patterns are similar to New England marshes. Schoenoplectus dies when transplanted to lower elevations with or without neighbors and thus is limited from the low marsh by physical stress, while Selliera grows best associated with Schoenoplectus, which shades and ameliorates potentially limiting desiccation stress. These results reveal that mechanisms driving community organization across environmental stress gradients, while generally similar among systems, cannot be directly extrapolated to unstudied systems. This finding has important implications for ecosystem conservation because it suggests that the mechanistic understanding of pattern generation necessary to manage and restore specific communities in novel habitats cannot rely exclusively on results from similar systems, and it identifies a critical role for experimental ecology in the management and conservation of natural systems and the services they provide.


Assuntos
Conservação dos Recursos Naturais , Modelos Biológicos , Desenvolvimento Vegetal , Áreas Alagadas , Chile , Dinâmica Populacional , Estresse Fisiológico
6.
Ecol Lett ; 10(10): 902-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17845290

RESUMO

Theory predicts that ecosystem engineers should have their most dramatic effects when they enable species, through habitat amelioration, to live in zones where physical and biological conditions would otherwise suppress or limit them. Mutualisms between mycorrhizal fungi and plants are key determinants of productivity and biodiversity in most terrestrial systems, but are thought to be unimportant in wetlands because anoxic sediments exclude fungal symbionts. Our field surveys revealed arbuscular mycorrhizal associations on salt marsh plant roots, but only in the presence of crabs that oxygenate soils as a by-product of burrowing. Field experiments demonstrate that fungal colonization is dependent on crab burrowing and responsible for nearly 35% of plant growth. These results highlight ecosystem engineers as ecological linchpins that can activate and maintain key mutualisms between species. Our findings align salt marshes with other important biogenic habitats whose productivity is reliant on mutualisms between the primary foundation species and micro-organisms.


Assuntos
Braquiúros/fisiologia , Micorrizas/fisiologia , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia , Simbiose , Animais , Argentina , Biomassa , Ecossistema , Sedimentos Geológicos/análise , Oxirredução , Oxigênio/análise , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Microbiologia do Solo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA