RESUMO
Cellulose nanofibers (CNF) can present a high viscosity and thixotropic behavior when dispersed in water. In this work, CNF isolated from sugarcane bagasse and modified by N-oxyl-2,2,6,6-tetramethylpiperidine (TEMPO) oxidation was added to a solution of carboxymethyl cellulose (CMC). This process produced an unexpected viscosity due to a synergistic effect that was observed macroscopically through rheology analysis. The phenomenon known as depletion flocculation was observed, which was caused by the reduction of the excluded volume. The interactions of the system were studied by ultraviolet-visible spectroscopy (UV-Vis), optical microscopy, and cryogenic transmission electron microscopy (cryo-TEM), which demonstrated the presence of the particle/polymer repulsion and subsequent formation of domains composed of aligned micro and nanocellulose particles clusters and nanofibers distributed throughout the sample, forming a percolated 3D structure responsible for a strong gelling and colloidal stability.
Assuntos
Carboximetilcelulose Sódica/química , Celulose/química , Nanopartículas/química , Estrutura Molecular , Tamanho da Partícula , Espectrofotometria Ultravioleta , Propriedades de SuperfícieRESUMO
Phase behavior and structural features were investigated for "complex salts", consisting of the cationic hexadecyltrimethylammonium (CTA) surfactant with polyacrylate (PA(n), n = 30 or 6000) counterions, mixed with water and different n-alcohols (ethanol, butanol, hexanol, octanol, and decanol). The liquid crystalline structures formed were identified by small-angle X-ray scattering measurements, which provided information about the changes in the geometry of the aggregates as functions of the concentration and chain length of the added n-alcohol. The obtained results were compared with a previous work on similar ternary mixtures of the same cationic surfactant but with the monomeric bromide counterion, CTABr (Fontell, K.; Khan, A.; Lindström, B.; Maciejewska, D.; Puang-Ngern, S. Colloid Polym. Sci., 1991, 269, 727). In general, the same phases were detected in systems with the complex salts CTAPA(n) as in systems with CTABr, but the swelling of the various liquid crystalline phases by water was much more limited in the complex salt systems. An isotropic alcoholic phase was observed with all alcohols and the size of this region of the phase diagram increased for the shorter alcohols, except for ethanol. For mixtures with octanol and ethanol, in particular, the extensions of the disordered isotropic phases were larger for the complex salt with the shorter polyacrylate ions.
RESUMO
This work reports on phase diagrams for mixtures of a complex salt formed by a cationic surfactant and an oppositely charged polyelectrolyte, hexadecyltrimethylammonium polymethacrylate, in binary mixtures with water and in ternary mixtures containing water and organic solvents of different polarity ('oils'): decanol, octanol, p-xylene and cyclohexane. The liquid crystalline structures formed were identified by small angle X-ray scattering measurements, which also provided information about changes in the size of the aggregates as a function of the system composition. These results are analysed in comparison with others previously reported [Bernardes et al., J. Phys. Chem. B 110 (2006) 10332-10340] for the analog complex formed with polyacrylate and, in general, reveal that the presence of an extra methylene group in the polymer chain does not produce significant changes in the complex phase diagrams nor in the structure of the liquid crystalline phases formed. Additionally, the obtained results confirm once more the approach used to analyze these kinds of systems formed by polymer and oppositely charged surfactant.