Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11154, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750081

RESUMO

We propose a distributed rewiring model which starts with a planar graph embedded into the Euclidean space and then behaves as a distributed system, where each node is provided with a set of dynamic links. The proposed rewiring evolves through cycles, where nodes explore the network to identify possible shortcuts and rewire their dynamic links. The rewiring decisions are subject to Euclidean and geodesic distance constrains. The emerging networks were assessed through topological and robustness analyses. We found that the networks display a variety of characteristics observed in complex networks encompassing phenomena such as preferential attachment, the distinctive traits of small-world networks, the presence of community structures, and robustness against degradation process. We consider that our proposal can be applied in the design of those self-managed systems in which there is a limitation on communication resources that can be represented by the Euclidean distance and, however, the components themselves can deploy strategies to optimize the transport of information and develop tolerance before contingencies.

2.
Entropy (Basel) ; 22(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33286926

RESUMO

The problem of controlling a spreading process in a two-layer multiplex networks in such a way that the extinction state becomes a global attractor is addressed. The problem is formulated in terms of a Markov-chain based susceptible-infected-susceptible (SIS) dynamics in a complex multilayer network. The stabilization of the extinction state for the nonlinear discrete-time model by means of appropriate adaptation of system parameters like transition rates within layers and between layers is analyzed using a dominant linear dynamics yielding global stability results. An answer is provided for the central question about the essential changes in the step from a single to a multilayer network with respect to stability criteria and the number of nodes that need to be controlled. The results derived rigorously using mathematical analysis are verified using statical evaluations about the number of nodes to be controlled and by simulation studies that illustrate the stability property of the multilayer network induced by appropriate control action.

3.
Entropy (Basel) ; 20(3)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33265295

RESUMO

The problem of stabilizing the spreading process to a prescribed probability distribution over a complex network is considered, where the dynamics of the nodes in the network is given by discrete-time Markov-chain processes. Conditions for the positioning and identification of actuators and sensors are provided, and sufficient conditions for the exponential stability of the desired distribution are derived. Simulations results for a network of N = 10 6 corroborate our theoretical findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA