Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neotrop Entomol ; 52(1): 104-113, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36626092

RESUMO

A multiple nucleopolyhedrovirus native isolate (SfCH32) of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) was encapsulated by spray-drying in a matrix based on oxidized corn starch without and with a fluorescent brightener. The microcapsules were exposed to UV radiation (365 nm) for 0, 2, 4, and 8 h at 25 °C or temperatures of 35, 40, and 45 °C for 8 h. The data obtained with temperatures 35, 40, and 45 °C were contrasted with those obtained at 25 °C. The microcapsules were evaluated for size, shape, and insecticidal capacity against third instar S. frugiperda larvae under laboratory conditions. The 82-84.2% of the encapsulating matrix, in a dry-weight basis, was recovered as NPV microcapsules of heterogeneous shape and size. The exposure to UV radiation and temperatures reduced significantly the insecticidal capacity of tested viruses; however, such capacity was higher for microencapsulated than for non-microencapsulated viruses. The non-encapsulated virus that had been exposed to 45 °C or maintained at UV radiation for 8 h showed the lowest insecticidal activity at 5th day post-inoculation, with a larvae mortality of 25.3 and 16%, respectively. The fluorescent brightener increased significantly the insecticidal capacity of encapsulated and non-encapsulated viruses, causing a mortality of 100% at that time point, and decreased the median lethal time independently of the incubation temperature and exposure time to radiation. The findings suggested that an encapsulating matrix based on oxidized corn starch might protect the insecticidal capacity of NPV under field conditions.


Assuntos
Inseticidas , Nucleopoliedrovírus , Animais , Spodoptera , Raios Ultravioleta , Temperatura , Zea mays , Cápsulas , Controle Biológico de Vetores , Larva
2.
Plants (Basel) ; 11(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406854

RESUMO

Streptomyces are recognized as antipathogenic agents and plant-growth-promoting rhizobacteria. The objective of this study was to evaluate the capacities of four antifungal Streptomyces strains to: produce the substances that are involved in plant growth; solubilize phosphates; and fix nitrogen. The effects of the volatile organic compounds (VOCs) that are emitted by these strains on the growth promotion of Arabidopsis thaliana and Phaseolus vulgaris L. (var. Pinto Saltillo) seedlings were also tested. All of the Streptomyces strains produced indole-3-acetic acid (IAA) (10.0 mg/L to 77.5 mg/L) and solubilized phosphates, but they did not fix nitrogen. In vitro assays showed that the VOCs from Streptomyces increased the shoot fresh weights (89-399%) and the root fresh weights (94-300%) in A. thaliana seedlings; however, these effects were less evident in P. vulgaris. In situ experiments showed that all the Streptomyces strains increased the shoot fresh weight (11.64-43.92%), the shoot length (11.39-29.01%), the root fresh weight (80.11-140.90%), the root length (40.06-59.01%), the hypocotyl diameter (up to 6.35%), and the chlorophyll content (up to 10.0%) in P. vulgaris seedlings. 3-Methyl-2-butanol had the highest effect among the ten pure VOCs on the growth promotion of A. thaliana seedlings. The tested Streptomyces strains favored biomass accumulation in A. thaliana and P. vulgaris seedlings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA