Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Purinergic Signal ; 12(2): 303-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26910734

RESUMO

Glioblastoma multiforme (GBM) is a deadly cancer characterized by a pro-tumoral immune response. T-regulatory (Treg) lymphocytes suppress effector immune cells through cytokine secretion and the adenosinergic system. Ecto-5'-nucleotidase/CD73 plays a crucial role in Treg-mediated immunosuppression in the GBM microenvironment (GME). Methotrexate (MTX) is an immunosuppressive drug that can increase the extracellular concentration of adenosine. In this manuscript, C6 GBM cells were treated with 1.0 µM MTX, and ecto-5'-nucleotidase/CD73 expression and extracellular AMP metabolism were analyzed in vitro. For in vivo studies, rats with implanted GBM were treated for 10 days with MTX-loaded lipid-core nanocapsules (MTX-LNCs, 1 mg/kg/day). The activity of ectonucleotidase and the expression of NTPDase1/CD39 and ecto-5'-nucleotidase/CD73 were measured. The frequencies of T lymphocytes (CD3(+)CD4(+), CD3(+)CD8(+), and CD4(+)CD25(high)CD39(+)) were quantified. In vitro, treatment with MTX increased CD73 expression and activity in C6 cells, which is in agreement with higher levels of extracellular adenosine. In vivo, MTX-LNC treatment increased CD39 expression on CD3(+)CD8(+) lymphocytes. In addition, MTX-LNC treatment up-regulated CD73 expression in tissue isolated from GBM, a finding that is in agreement with the higher activity of this enzyme. More specifically, the treatment increased CD73 expression on CD3(+)CD4(+) and CD3(+)CD8(+) lymphocytes. Treatment with MTX-LNCs decreased the frequencies of T-cytotoxic, T-helper, and Treg lymphocytes in the GME. Although more studies are necessary to better understand the complex cross-talk mediated by supra-physiological concentrations of adenosine in the GME, these studies demonstrate that MTX treatment increases CD73 enzyme expression and AMP hydrolysis, leading to an increase in adenosine production and immunosuppressive capability.


Assuntos
5'-Nucleotidase/biossíntese , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Imunossupressores/farmacologia , Metotrexato/farmacologia , Linfócitos T/efeitos dos fármacos , Monofosfato de Adenosina/metabolismo , Animais , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Glioblastoma/enzimologia , Imuno-Histoquímica , Ratos , Evasão Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Regulação para Cima
2.
Biochim Biophys Acta ; 1852(1): 120-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25445541

RESUMO

Glioma cells release cytokines to stimulate inflammation that facilitates cell proliferation. Here, we show that Lipopolysaccharide (LPS) treatment could induce glioma cells to proliferate and this process was dependent on nucleotide receptor activation as well as interleukin-8 (IL-8/CXCL8) secretion. We observed that extracellular nucleotides controlled IL-8/CXCL8 and monocyte chemoattractant protein 1 (MCP-1/CCL2) release by U251MG and U87MG human glioma cell lines via P2X7 and P2Y6 receptor activation. The LPS-induced release of these cytokines was also modulated by purinergic receptor activation since IL-8 and MCP-1 release was decreased by the nucleotide scavenger apyrase as well as by the pharmacological P2Y6 receptor antagonists suramin and MRS2578. In agreement with these observations, the knockdown of P2Y6 expression decreased LPS-induced IL-8 release as well as the spontaneous release of IL-8 and MCP-1, suggesting an endogenous basal release of nucleotides. Moreover, high millimolar concentrations of ATP increased IL-8 and MCP-1 release by the glioma cells stimulated with suboptimal LPS concentration which were blocked by P2X7 and P2Y6 antagonists. Altogether, these data suggest that extracellular nucleotides control glioma growth via P2 receptor-dependent IL-8 and MCP-1 secretions.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Quimiocina CCL2/metabolismo , Glioma/metabolismo , Interleucina-8/metabolismo , Receptores Purinérgicos/fisiologia , Sequência de Bases , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Primers do DNA , Glioma/patologia , Humanos , Reação em Cadeia da Polimerase , Receptores Purinérgicos/genética , Receptores Purinérgicos/metabolismo , Transdução de Sinais
3.
Purinergic Signal ; 8(2): 235-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22038661

RESUMO

Gliomas are the most common and devastating type of primary brain tumor. Many non-neoplastic cells, including immune cells, comprise the tumor microenvironment where they create a milieu that appears to dictate cancer development. ATP and the phosphohydrolytic products ADP and adenosine by activating P2 and P1 receptors may participate in these interactions among malignant and immune cells. Purinergic receptor-mediated cell communication is closely regulated by ectonucleotidases, such as by members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, which hydrolyze extracellular nucleotides. We have shown that gliomas, unlike astrocytes, exhibit low NTPDase activity. Furthermore, ATP induces glioma cell proliferation and the co-administration of apyrase decreases progression of injected cells in vivo. We have previously shown that NTPDase2 reconstitution dramatically increases tumor growth in vivo. Here we evaluated whether NTPDase2 reconstitution to gliomas modulates systemic inflammatory responses. We observed that NTPDase2 overexpression modulated pro-inflammatory cytokine production and platelet reactivity. Additionally, pathological alterations in the lungs were observed in rats bearing these tumors. Our results suggest that disruption of purinergic signaling via ADP accumulation creates an inflammatory state that may promote tumor spread and dictate clinical progression.


Assuntos
Adenosina Trifosfatases/biossíntese , Neoplasias Encefálicas/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glioma/enzimologia , Mediadores da Inflamação/fisiologia , Lesão Pulmonar/enzimologia , Adenosina Trifosfatases/genética , Animais , Apirase/biossíntese , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/patologia , Inflamação/enzimologia , Inflamação/patologia , Lesão Pulmonar/patologia , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA