Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. microbiol ; Braz. j. microbiol;48(2): 333-341, April.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839367

RESUMO

Abstract Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency.


Assuntos
Oryza/fisiologia , Oryza/microbiologia , Estresse Fisiológico , Desidratação , Endófitos/crescimento & desenvolvimento , Proteínas de Plantas/análise , Oryza/enzimologia , Brasil , Raízes de Plantas/microbiologia , Endófitos/isolamento & purificação , Antioxidantes/análise
2.
Braz. J. Microbiol. ; 48(2): 333-341, abr.-jun. 2017. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-17539

RESUMO

Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency.(AU)


Assuntos
Oryza , Endófitos , Desidratação , Fungos , Fatores Abióticos , Água
3.
Braz. j. microbiol ; Braz. j. microbiol;48(1): 95-100, Jan.-Mar. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-839348

RESUMO

Abstract The family Leguminosae comprises approximately 20,000 species that mostly form symbioses with arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB). This study is aimed at investigating and confirming the dependence on nodulation and biological nitrogen fixation in the specie Piptadenia gonoacantha (Mart.) Macbr., which belongs to the Piptadenia group. Two consecutive experiments were performed in a greenhouse. The experiments were fully randomized with six replicates and a factorial scheme. For the treatments, the two AMF species and three NFB strains were combined to nodulate P. gonoacantha in addition to the control treatments. The results indicate this species’ capacity for nodulation without the AMF; however, the AMF + NFB combinations yielded a considerable gain in P. gonoacantha shoot weight compared with the treatments that only included inoculating with bacteria or AMF. The results also confirm that the treatment effects among the AMF + NFB combinations produced different shoot dry weight/root dry weight ratios. We conclude that AMF is not necessary for nodulation and that this dependence improves species development because plant growth increases upon co-inoculation.


Assuntos
Micorrizas , Bactérias Fixadoras de Nitrogênio , Fabaceae/microbiologia , Simbiose , Nódulos Radiculares de Plantas/microbiologia , Nodulação , Fixação de Nitrogênio
4.
Braz. j. microbiol ; Braz. j. microbiol;48(1): 87-94, Jan.-Mar. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839361

RESUMO

Abstract In order to obtain an arbuscular mycorrhizal fungi (AMF) native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum). Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H) was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules.


Assuntos
Raízes de Plantas/microbiologia , Micorrizas , Meio Ambiente , Microbiologia do Solo , Esporos Fúngicos , Simbiose , Contagem de Colônia Microbiana , Micorrizas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
5.
Braz. J. Microbiol. ; 48(1): 95-100, jan.-mar. 2017. tab
Artigo em Inglês | VETINDEX | ID: vti-22750

RESUMO

The family Leguminosae comprises approximately 20,000 species that mostly form symbioses with arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB). This study is aimed at investigating and confirming the dependence on nodulation and biological nitrogen fixation in the specie Piptadenia gonoacantha (Mart.) Macbr., which belongs to the Piptadenia group. Two consecutive experiments were performed in a greenhouse. The experiments were fully randomized with six replicates and a factorial scheme. For the treatments, the two AMF species and three NFB strains were combined to nodulate P. gonoacantha in addition to the control treatments. The results indicate this species capacity for nodulation without the AMF; however, the AMF + NFB combinations yielded a considerable gain in P. gonoacantha shoot weight compared with the treatments that only included inoculating with bacteria or AMF. The results also confirm that the treatment effects among the AMF + NFB combinations produced different shoot dry weight/root dry weight ratios. We conclude that AMF is not necessary for nodulation and that this dependence improves species development because plant growth increases upon co-inoculation.(AU)


Assuntos
Micorrizas , Bactérias Fixadoras de Nitrogênio , Nodulação , Simbióticos/análise
6.
Braz. J. Microbiol. ; 48(1): 87-94, jan.-mar. 2017. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-22749

RESUMO

In order to obtain an arbuscular mycorrhizal fungi (AMF) native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum). Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H) was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules.(AU)


Assuntos
Micorrizas , Glomeromycota , Conservação dos Recursos Naturais/métodos , Conservação de Terras , Cuba
7.
Braz J Microbiol ; 48(2): 333-341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28089614

RESUMO

Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency.


Assuntos
Desidratação , Endófitos/crescimento & desenvolvimento , Oryza/microbiologia , Oryza/fisiologia , Estresse Fisiológico , Antioxidantes/análise , Brasil , Endófitos/isolamento & purificação , Oryza/enzimologia , Proteínas de Plantas/análise , Raízes de Plantas/microbiologia
8.
Braz J Microbiol ; 48(1): 87-94, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27889421

RESUMO

In order to obtain an arbuscular mycorrhizal fungi (AMF) native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum). Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H) was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules.


Assuntos
Meio Ambiente , Micorrizas , Raízes de Plantas/microbiologia , Contagem de Colônia Microbiana , Micorrizas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Microbiologia do Solo , Esporos Fúngicos , Simbiose
9.
Braz J Microbiol ; 48(1): 95-100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27876549

RESUMO

The family Leguminosae comprises approximately 20,000 species that mostly form symbioses with arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB). This study is aimed at investigating and confirming the dependence on nodulation and biological nitrogen fixation in the specie Piptadenia gonoacantha (Mart.) Macbr., which belongs to the Piptadenia group. Two consecutive experiments were performed in a greenhouse. The experiments were fully randomized with six replicates and a factorial scheme. For the treatments, the two AMF species and three NFB strains were combined to nodulate P. gonoacantha in addition to the control treatments. The results indicate this species' capacity for nodulation without the AMF; however, the AMF+NFB combinations yielded a considerable gain in P. gonoacantha shoot weight compared with the treatments that only included inoculating with bacteria or AMF. The results also confirm that the treatment effects among the AMF+NFB combinations produced different shoot dry weight/root dry weight ratios. We conclude that AMF is not necessary for nodulation and that this dependence improves species development because plant growth increases upon co-inoculation.


Assuntos
Fabaceae/microbiologia , Micorrizas , Bactérias Fixadoras de Nitrogênio , Simbiose , Fixação de Nitrogênio , Nodulação , Nódulos Radiculares de Plantas/microbiologia
10.
Biomed Res Int ; 2016: 3747501, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27366744

RESUMO

The importance of soil humus in soil fertility has been well established many years ago. However, the knowledge about the whole mechanisms by which humic molecules in the rhizosphere improve plant growth remains partial and rather fragmentary. In this review we discuss the relationships between two main signaling pathway families that are affected by humic substances within the plant: one directly related to hormonal action and the other related to reactive oxygen species (ROS). In this sense, our aims are to try the integration of all these events in a more comprehensive model and underline some points in the model that remain unclear and deserve further research.


Assuntos
Substâncias Húmicas , Reguladores de Crescimento de Plantas/fisiologia , Fenômenos Fisiológicos Vegetais , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia
11.
Sci Rep ; 6: 20798, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26862010

RESUMO

Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established.


Assuntos
Substâncias Húmicas , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Relação Estrutura-Atividade
12.
Mycorrhiza ; 25(8): 627-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25771864

RESUMO

Variation in arbuscular mycorrhizal fungi (AMF) communities is described for the first time in rupestrian grasslands in Brazil along an altitudinal gradient of 700 m (800 to 1400 m a.s.l.). Hypotheses tested were that soil properties influence the variation in AMF communities and that the frequency of the most common species of AMF is inversely influenced by the richness of other AMF. Field and laboratory data were collected on AMF community composition, richness, density, and frequency in the altitudinal gradient, and the relationships with several physical-chemical soil properties and altitude were evaluated. Fifty-one species of AMF were recorded, with 14 species being reported as possibly new to science and nine species representing new records for Brazil. This single elevation gradient alone contains 22% of the known world diversity of AMF. Soil properties and AMF community density and richness varied significantly along the elevation (p < 0.05). AMF density and richness were higher at the intermediate altitude, while AMF species composition differed statistically among the altitudes.


Assuntos
Micorrizas/classificação , Microbiologia do Solo , Biodiversidade , Brasil , Análise por Conglomerados , Pradaria , Micorrizas/isolamento & purificação , Solo/química , Esporos Fúngicos
13.
Acta amaz ; 40(4): 641-646, dez. 2010. ilus, graf, tab
Artigo em Português | LILACS, VETINDEX | ID: lil-570427

RESUMO

Sistemas em aléias podem consistir numa solução para o uso da terra em regiões do Trópico Úmido. A relação dessa forma de manejo com a dinâmica dos fungos micorrízicos arbusculares (FMA) ainda é pouco compreendida. O objetivo desse estudo foi verificar a influência de leguminosas arbóreas em um sistema em aléias na capacidade infectiva e diversidade de FMA nativos em São Luís, Maranhão. Amostras de solo coletadas do sistema em aléias no campus experimental da Universidade Estadual do Maranhão (UEMA) - São Luís, em duas épocas do ano (Julho/2006 e Abril/2007), a duas distâncias (0 m e 0,5 m) do tronco de três leguminosas (Leucaena leucocephala, Clitoria fairchildiana e Acacia mangium) e em área testemunha (sem leguminosas) na profundidade de 0 - 20 cm. O solo coletado foi utilizado para avaliar a capacidade infectiva dos FMA nativos, densidade e identificação de glomerosporos. O sistema em aléias aumenta o potencial de infectividade dos FMA nativos dependendo da espécie de leguminosa arbórea associada, estação de coleta e proximidades das árvores. Dezesseis espécies de FMA foram encontradas na área distribuídas em cinco gêneros, sendo Scutellospora o mais representativo.


Alley cropping systems may be a solution for land use in tropical regions. How land use is connected to mycorrhizal arbuscular fungi (AMF) is poorly understood, especially in the tropics. The aim of this study was to evaluate the influence of leguminous trees in an alley cropping system in regard to the infectivity and diversity of native AMF species in São Luís, Maranhão, Brazil. Soil samples were collected in an experimental area of the Universidade Estadual do Maranhão (UEMA) - São Luís, in two seasons (July/2006 and April/2007), two distances (0 m and 0.5 m) from the trunk of three leguminous trees (Leucaena leucocephala, Clitoria fairchildiana e Acacia mangium), and in a control area 0-20 cm deep. Soil samples were used to evaluate the infectivity of AMF, density and diversity of glomerospores. The alley cropping systems increased the infectivity of AMF which varied according to the leguminous tree species, raining season and distance from trees. Sixteen AMF species of five genera were identified in the area, and Scutellospora was the most representative genus.


Assuntos
Florestas , Micorrizas , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA