Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microorganisms ; 10(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36144367

RESUMO

Despite the central role of microorganisms in soil fertility, little understanding exists regarding the impact of management practices and soil microbial diversity on soil processes. Strong correlations among soil microbial composition, management practices, and microbially mediated processes have been previously shown. However, limited integration of the different parameters has hindered our understanding of agroecosystem functioning. Multivariate analyses of these systems allow simultaneous evaluation of the parameters and can lead to hypotheses on the microbial groups involved in specific nutrient transformations. In the present study, using a multivariate approach, we investigated the effect of microbial composition (16SrDNA sequencing) and soil properties in carbon mineralization (CMIN) (BIOLOG™, Hayward, CA, USA) across different management categories on coffee agroecosystems in Mexico. Results showed that (i) changes in soil physicochemical variables were related to management, not to region, (ii) microbial composition was associated with changes in management intensity, (iii) specific bacterial groups were associated with different management categories, and (iv) there was a broader utilization range of carbon sources in non-managed plots. The identification of specific bacterial groups, management practices, and soil parameters, and their correlation with the utilization range of carbon sources, presents the possibility to experimentally test hypotheses on the interplay of all these components and further our understanding of agroecosystem functioning and sustainable management.

2.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34433567

RESUMO

The social soil-dwelling bacterium Myxococcus xanthus can form multicellular structures, known as fruiting bodies. Experiments in homogeneous environments have shown that this process is affected by the physicochemical properties of the substrate, but they have largely neglected the role of complex topographies. We experimentally demonstrate that the topography alters single-cell motility and multicellular organization in M. xanthus In topographies realized by randomly placing silica particles over agar plates, we observe that the cells' interaction with particles drastically modifies the dynamics of cellular aggregation, leading to changes in the number, size, and shape of the fruiting bodies and even to arresting their formation in certain conditions. We further explore this type of cell-particle interaction in a computational model. These results provide fundamental insights into how the environment topography influences the emergence of complex multicellular structures from single cells, which is a fundamental problem of biological, ecological, and medical relevance.

3.
FEMS Microbiol Lett ; 368(4)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547887

RESUMO

Transition from historic grasslands to woody plants in semiarid regions has led to questions about impacts on soil functioning, where microorganisms play a primary role. Understanding the relationship between microbes, plant diversity and soil functioning is relevant to assess such impacts. We evaluate the effect that plant type change in semiarid ecosystems has for microbial diversity and composition, and how this is related to carbon mineralization (CMIN) as a proxy for soil functioning. We followed a mesocosm experiment during 2 years within the Biosphere 2 facility in Oracle, AZ, USA. Two temperature regimes were established with two types of plants (grass or mesquite). Soil samples were analyzed for physicochemical and functional parameters, as well as microbial community composition using 16S rRNA amplicon metagenomics (Illumina MiSeq). Our results show the combined role of plant type and temperature regime in CMIN, where CMIN in grass has lower values at elevated temperatures compared with the opposite trend in mesquite. We also found a strong correlation of microbial composition with plant type but not with temperature regime. Overall, we provide evidence of the major effect of plant type in the specific composition of microbial communities as a potential result of the shrub encroachment.


Assuntos
Carbono/metabolismo , Ecossistema , Microbiota , Microbiologia do Solo , Carbono/análise , Plantas/classificação , Plantas/metabolismo , Plantas/microbiologia , Solo/química , Temperatura
4.
J Exp Zool B Mol Dev Evol ; 336(3): 300-314, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32419346

RESUMO

Development and evolution are dynamical processes under the continuous control of organismic and environmental factors. Generic physical processes, associated with biological materials and certain genes or molecules, provide a morphological template for the evolution and development of organism forms. Generic dynamical behaviors, associated with recurring network motifs, provide a temporal template for the regulation and coordination of biological processes. The role of generic physical processes and their associated molecules in development is the topic of the dynamical patterning module (DPM) framework. The role of generic dynamical behaviors in biological regulation is studied via the identification of the associated network motifs (NMs). We propose a joint DPM-NM perspective on the emergence and regulation of multicellularity focusing on a multicellular aggregative bacterium, Myxococcus xanthus. Understanding M. xanthus development as a dynamical process embedded in a physical substrate provides novel insights into the interaction between developmental regulatory networks and generic physical processes in the evolutionary transition to multicellularity.


Assuntos
Evolução Biológica , Myxococcus xanthus/crescimento & desenvolvimento , Padronização Corporal , Morfogênese
5.
Evodevo ; 11: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062243

RESUMO

Myxobacteria and dictyostelids are prokaryotic and eukaryotic multicellular lineages, respectively, that after nutrient depletion aggregate and develop into structures called fruiting bodies. The developmental processes and resulting morphological outcomes resemble one another to a remarkable extent despite their independent origins, the evolutionary distance between them and the lack of traceable homology in molecular mechanisms. We hypothesize that the morphological parallelism between the two lineages arises as the consequence of the interplay within multicellular aggregates between generic processes, physical and physicochemical processes operating similarly in living and non-living matter at the mesoscale (~10-3-10-1 m) and agent-like behaviors, unique to living systems and characteristic of the constituent cells, considered as autonomous entities acting according to internal rules in a shared environment. Here, we analyze the contributions of generic and agent-like determinants in myxobacteria and dictyostelid development and their roles in the generation of their common traits. Consequent to aggregation, collective cell-cell contacts mediate the emergence of liquid-like properties, making nascent multicellular masses subject to novel patterning and morphogenetic processes. In both lineages, this leads to behaviors such as streaming, rippling, and rounding-up, as seen in non-living fluids. Later the aggregates solidify, leading them to exhibit additional generic properties and motifs. Computational models suggest that the morphological phenotypes of the multicellular masses deviate from the predictions of generic physics due to the contribution of agent-like behaviors of cells such as directed migration, quiescence, and oscillatory signal transduction mediated by responses to external cues. These employ signaling mechanisms that reflect the evolutionary histories of the respective organisms. We propose that the similar developmental trajectories of myxobacteria and dictyostelids are more due to shared generic physical processes in coordination with analogous agent-type behaviors than to convergent evolution under parallel selection regimes. Insights from the biology of these aggregative forms may enable a unified understanding of developmental evolution, including that of animals and plants.

6.
Rev. epidemiol. controle infecç ; 10(3): 1-15, jul.-set. 2020. ilus
Artigo em Português | LILACS | ID: biblio-1247589

RESUMO

Justificativa e objetivos: A Nutrição Parenteral Total (NPT) possui grande importância clínica no tratamento e prevenção da desnutrição de pacientes com problemas no sistema digestório. Apesar das boas práticas de manipulação de NPT estarem bem estabelecidas, a contaminação desses produtos ainda ocorre, e esses produto permanecem como um medicamento de alto risco pelo Institute for Safe Medication Practices. O presente estudo teve como objetivo obter um panorama sobre os dados documentais das amostras de nutrição parenteral encaminhadas ao Instituto Nacional de Controle de Qualidade em Saúde da Fundação Oswaldo Cruz. Métodos: Foi realizado um estudo qualitativo descritivo e quantitativo, com base em um coorte transversal de amostras de NPT analisadas no período de 2000 a 2016. Resultados: Foram encaminhadas 134 amostras de NPT no período do estudo. 11,20% das amostras foram encaminhadas em 2001, 0,80%, em 2005, 8,20%, em 2006, 16,40% em 2007, 63,40% em 2013. Seis amostras (4,5%) foram canceladas e 113 submetidas ao ensaio de esterilidade, resultando em 13,3% de amostras insatisfatórias. Conclusão: No período do estudo, quatro eventos suspeitos de contaminação bacteriana por enterobactérias em NPTs administradas em pacientes foram relatados, sendo três deles ainda não descritos na literatura. Para que a segurança dos pacientes que fazem uso de NPT seja garantida, sugere-se que as normas que regulamentam a terapia com NPT sejam revisadas e atualizadas e sejam estabelecidos programas de monitoramento da qualidade dessas preparações.(AU)


Background and objectives: Total parenteral nutrition (TPN) has great clinical importance in malnutrition treatment and prevention in patients with digestive problems. Although good practices for handling TPN are well established, contamination of these products still occurs, and this product remains listed as a higher risk drug by the Institute for Safe Medication Practices. The present study aimed to obtain an overview of the documentary data of the parenteral nutrition samples sent to the National Institute for Quality Control in Health (INCQS) of Fundação Oswaldo Cruz. Methods: This is a qualitative descriptive and quantitative study carried out based on a cross-section of TPN samples analyzed from 2000 to 2016. Results: A total of TPN 134 samples were sent during the study period. 11.20% of the samples were sent in 2001, 0.80% in 2005, 8.20% in 2006, 16.40% in 2007, 63.40% in 2013. Six samples (4.5%) were canceled and 113 submitted to sterility testing, resulting in 13.3% unsatisfactory samples. Conclusion: During the study period, four suspected events of enterobacterial contamination in TPNs administered to patients were reported, three of which have not yet been described in the scientific literature. For the safety of patients using TPN to be guaranteed, it is suggested that the norms that regulate TPN therapy be reviewed and updated, and programs to monitor the quality of these preparations should be established.(AU)


Justificatión y objetivos: La Nutrición Parenteral Total (NPT) tiene una gran importancia clínica en el tratamiento y la prevención de la desnutrición en pacientes con problemas en el sistema digestivo. Aunque las buenas prácticas para el manejo del TNP están bien establecidas, la contaminación de estos productos aún ocurre, y este producto sigue siendo catalogado como un medicamento de alto riesgo por el Institute for Safe Medication Practices. El presente estudio tuvo como objetivo obtener una visión general de los datos documentales de muestras de nutrición parenteral enviadas a Instituto Nacional de Control de Calidad en Salud (INCQS) por Fundação Oswaldo Cruz. Métodos: Se realizó un estudio descriptivo cualitativo y cuantitativo basado en una sección transversal de muestras de NPT analizadas entre 2000 y 2016. Resultados: Se enviaron un total de 134 muestras de NPT durante el período de estudio. 11,20% de las muestras enviadas en 2001, 0,80%, en 2005, 8,20%, en 2006, 16,40%, en 2007, 63,40%, en 2013. Seis muestras (4,5%) fueron cancelados y 113 sometidos a la prueba de esterilidad, resultando en 13,3% de muestras insatisfactorias. Conclusión: Durante el período de estudio, se informaron cuatro eventos sospechosos de contaminación por enterobaterias en NPT administrados a pacientes, tres de los cuales aún no se han descrito en la literatura. Para garantizar la seguridad de pacientes que usan NPT, se sugiere revisar y actualizar las normas que regulan la terapia de NPT y se deben establecer programas para controlar la calidad de estas preparaciones.(AU)


Assuntos
Humanos , Controle de Qualidade , Nutrição Parenteral Total , Nutrição Parenteral , Vigilância Sanitária , Boas Práticas de Manipulação
7.
FEMS Microbiol Ecol ; 96(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490512

RESUMO

The rhizosphere provides several benefits to the plant host being a strong determinant for its health, growth and productivity. Nonetheless, the factors behind the assembly of the microbial communities associated with the rhizosphere such as the role of plant genotypes are not completely understood. In this study, we tested the role that intraspecific genetic variation has in rhizospheric microbial community assemblages, using genetically distinct wild cotton populations as a model of study. We followed a common garden experiment including five wild cotton populations, controlling for plant genotypes, environmental conditions and soil microbial community inoculum, to test for microbial differences associated with genetic variation of the plant hosts. Microbial communities of the treatments were characterized by culture-independent 16S rRNA gene amplicon sequencing with Illumina MiSeq platform. We analyzed microbial community diversity (alpha and beta), and diversity structure of such communities, determined by co-occurrence networks. Results show that different plant genotypes select for different and specific microbial communities from a common inoculum. Although we found common amplicon sequence variants (ASVs) to all plant populations (235), we also found unique ASVs for different populations that could be related to potential functional role of such ASVs in the rhizosphere.


Assuntos
Gossypium , Microbiota , Bactérias/genética , Genótipo , México , Raízes de Plantas , RNA Ribossômico 16S/genética , Rizosfera , Solo , Microbiologia do Solo
8.
J Exp Zool B Mol Dev Evol ; 334(1): 14-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31829529

RESUMO

How specific environmental contexts contribute to the robustness and variation of developmental trajectories and evolutionary transitions is a central point in Ecological Evolutionary Developmental Biology ("Eco-Evo-Devo"). However, the articulation of ecological, evolutionary and developmental processes into integrative frameworks has been elusive, partly because standard experimental designs neglect or oversimplify ecologically meaningful contexts. Microbial models are useful to expose and discuss two possible sources of bias associated with conventional gene-centered experimental designs: the use of laboratory strains and standard laboratory environmental conditions. We illustrate our point by showing how contrasting developmental phenotypes in Myxococcus xanthus depend on the joint variation of temperature and substrate stiffness. Microorganismal development can provide key information for better understanding the role of environmental conditions in the evolution of developmental variation, and to overcome some of the limitations associated with current experimental approaches.


Assuntos
Evolução Biológica , Ecossistema , Modelos Biológicos , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/genética , Viés , Projetos de Pesquisa
9.
PeerJ ; 7: e7017, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31218120

RESUMO

One of the best ex situ conservation strategies for wild germplasm is in vitro conservation of genetic banks. The success of in vitro conservation relies heavily on the micropropagation or performance of the species of interest. In the context of global change, crop production challenges and climate change, we face a reality of intensified crop production strategies, including genetic engineering, which can negatively impact biodiversity conservation. However, the possible consequences of transgene presence for the in vitro performance of populations and its implications for biodiversity conservation are poorly documented. In this study we analyzed experimental evidence of the potential effects of transgene presence on the in vitro performance of Gossypium hirsutum L. populations, representing the Mexican genetic diversity of the species, and reflect on the implications of such presence for ex situ genetic conservation of the natural variation of the species. We followed an experimental in vitro performance approach, in which we included individuals from different wild cotton populations as well as individuals from domesticated populations, in order to differentiate the effects of domestication traits dragged into the wild germplasm pool via gene flow from the effects of transgene presence. We evaluated the in vitro performance of five traits related to plant establishment (N = 300): propagation rate, leaf production rate, height increase rate, microbial growth and root development. Then we conducted statistical tests (PERMANOVA, Wilcoxon post-hoc tests, and NMDS multivariate analyses) to evaluate the differences in the in vitro performance of the studied populations. Although direct causality of the transgenes to observed phenotypes requires strict control of genotypes, the overall results suggest detrimental consequences for the in vitro culture performance of wild cotton populations in the presence of transgenes. This provides experimental, statistically sound evidence to support the implementation of transgene screening of plants to reduce time and economic costs in in vitro establishment, thus contributing to the overarching goal of germplasm conservation for future adaptation.

10.
R Soc Open Sci ; 6(3): 181730, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31032028

RESUMO

In order to investigate the contribution of the physical environment to variation in multicellular development of Myxococcus xanthus, phenotypes developed by different genotypes in a gradient of substrate stiffness conditions were quantitatively characterized. Statistical analysis showed that plastic phenotypes result from the genotype, the substrate conditions and the interaction between them. Also, phenotypes were expressed in two distinguishable scales, the individual and the population levels, and the interaction with the environment showed scale and trait specificity. Overall, our results highlight the constructive role of the physical context in the development of microbial multicellularity, with both ecological and evolutionary implications.

11.
Front Plant Sci ; 9: 871, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061903

RESUMO

Comparative analyses of developmental processes across a broad spectrum of organisms are required to fully understand the mechanisms responsible for the major evolutionary transitions among eukaryotic photosynthetic lineages (defined here as the polyphyletic algae and the monophyletic land plants). The concepts of dynamical patterning modules (DPMs) and biogeneric materials provide a framework for studying developmental processes in the context of such comparative analyses. In the context of multicellularity, DPMs are defined as sets of conserved gene products and molecular networks, in conjunction with the physical morphogenetic and patterning processes they mobilize. A biogeneric material is defined as mesoscale matter with predictable morphogenetic capabilities that arise from complex cellular conglomerates. Using these concepts, we outline some of the main events and transitions in plant evolution, and describe the DPMs and biogeneric properties associated with and responsible for these transitions. We identify four primary DPMs that played critical roles in the evolution of multicellularity (i.e., the DPMs responsible for cell-to-cell adhesion, identifying the future cell wall, cell differentiation, and cell polarity). Three important conclusions emerge from a broad phyletic comparison: (1) DPMs have been achieved in different ways, even within the same clade (e.g., phycoplastic cell division in the Chlorophyta and phragmoplastic cell division in the Streptophyta), (2) DPMs had their origins in the co-option of molecular species present in the unicellular ancestors of multicellular plants, and (3) symplastic transport mediated by intercellular connections, particularly plasmodesmata, was critical for the evolution of complex multicellularity in plants.

12.
Curr Opin Genet Dev ; 51: 37-45, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29885639

RESUMO

Multicellular development occurs in diverse microbial lineages and involves the complex interaction among biochemical, physical and ecological factors. We focus on the mechanical forces that appear to be relevant for the scale and material qualities of individual cells and small cellular conglomerates. We review the effects of such forces on the development of some paradigmatic microorganisms, as well as their overall consequences in multicellular structures. Microbes exhibiting multicellular development have been considered models for the evolutionary transition to multicellularity. Therefore, we discuss how comparative, integrative and dynamic approaches to the mechanical effects involved in microbial development can provide valuable insights into some of the principles behind the evolutionary transition to multicellularity.


Assuntos
Bactérias/crescimento & desenvolvimento , Evolução Biológica , Linhagem da Célula/genética , Fenômenos Mecânicos , Bactérias/genética , Modelos Biológicos
13.
Dev Growth Differ ; 60(2): 121-129, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29441522

RESUMO

Myxococcus xanthus is a myxobacterium that exhibits aggregation and cellular differentiation during the formation of fruiting bodies. Therefore, it has become a valuable model system to study the transition to multicellularity via cell aggregation. Although there is a vast set of experimental information for the development on M. xanthus, the dynamics behind cell-fate determination in this organism's development remain unclear. We integrate the currently available evidence in a mathematical network model that allows to test the set of molecular elements and regulatory interactions that are sufficient to account for the specification of the cell types that are observed in fruiting body formation. Besides providing a dynamic mechanism for cell-fate determination in the transition to multicellular aggregates of M. xanthus, this model enables the postulation of specific mechanisms behind some experimental observations for which no explanations have been provided, as well as new regulatory interactions that can be experimentally tested. Finally, this model constitutes a formal basis on which the continuously emerging data for this system can be integrated and interpreted.


Assuntos
Modelos Biológicos , Myxococcus xanthus/citologia , Myxococcus xanthus/crescimento & desenvolvimento , Movimento
14.
Front Plant Sci ; 8: 2030, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259610

RESUMO

Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest consequences of genetic modification beyond the target trait(s).

15.
Phys Rev E ; 95(3-1): 032410, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415207

RESUMO

Stem cells are identical in many scales, they share the same molecular composition, DNA, genes, and genetic networks, yet they should acquire different properties to form a functional tissue. Therefore, they must interact and get some external information from their environment, either spatial (dynamical fields) or temporal (lineage). In this paper we test to what extent coupled chemical and physical fields can underlie the cell's positional information during development. We choose the root apical meristem of Arabidopsis thaliana to model the emergence of cellular patterns. We built a model to study the dynamics and interactions between the cell divisions, the local auxin concentration, and physical elastic fields. Our model recovers important aspects of the self-organized and resilient behavior of the observed cellular patterns in the Arabidopsis root, in particular, the reverse fountain pattern observed in the auxin transport, the PIN-FORMED (protein family of auxin transporters) polarization pattern and the accumulation of auxin near the region of maximum curvature in a bent root. Our model may be extended to predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Transporte Biológico/fisiologia , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Morfogênese/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Fenômenos Biomecânicos , Divisão Celular/fisiologia , Simulação por Computador , Elasticidade , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/fisiologia , Células-Tronco/fisiologia
16.
J Exp Zool B Mol Dev Evol ; 328(1-2): 165-178, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28217903

RESUMO

The transition to multicellularity, recognized as one the major transitions in evolution, has occurred independently several times. While multicellular development has been extensively studied in zygotic organisms including plant and animal groups, just a few aggregative multicellular organisms have been employed as model organisms for the study of multicellularity. Studying different evolutionary origins and modes of multicellularity enables comparative analyses that can help identifying lineage-specific aspects of multicellular evolution and generic factors and mechanisms involved in the transition to multicellularity. Among aggregative multicellular organisms, myxobacteria are a valuable system to explore the particularities that aggregation confers to the evolution of multicellularity and mechanisms shared with clonal organisms. Moreover, myxobacteria species develop fruiting bodies displaying a range of morphological diversity. In this review, we aim to synthesize diverse lines of evidence regarding myxobacteria development and discuss them in the context of Evo-Devo concepts and approaches. First, we briefly describe the developmental processes in myxobacteria, present an updated comparative analysis of the genes involved in their developmental processes and discuss these and other lines of evidence in terms of co-option and developmental system drift, two concepts key to Evo-Devo studies. Next, as has been suggested from Evo-Devo approaches, we discuss how broad comparative studies and integration of diverse genetic, physicochemical, and environmental factors into experimental and theoretical models can further our understanding of myxobacterial development, phenotypic variation, and evolution.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Myxococcales/citologia , Myxococcales/genética
17.
J Exp Zool B Mol Dev Evol ; 328(1-2): 5-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491339

RESUMO

Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Pesquisa , Animais , América Latina
18.
Front Microbiol ; 8: 2478, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326663

RESUMO

The milpa is a traditional maize-based polyculture in Mexico that is typically practiced as rainfed agriculture. Because milpa cultivation has been practiced over a vast range of environmental and cultural conditions, this agroecosystem is recognized as an important repository of biological and cultural diversity. As for any agroecosystem, the relationship between plant development and the biogeochemical processes of the soil is critical. Although the milpa has been studied from different perspectives, the diversity and structure of microbial communities within milpa soils remain largely unexplored. In this study, we surveyed a milpa system in Central Mexico across cropping season: before planting (dry season; t1), during the early growth of plants (onset of the rainy season; t2), and before harvest (end of the rainy season; t3). In order to examine changes in community structure through time, we characterized bacterial diversity through high-throughput sequencing of 16S rRNA gene amplicons and recorded the nutrient status of multiple (5-10) soil samples from our milpa plots. We estimated microbial diversity from a total of 90 samples and constructed co-occurrence networks. Although we did not find significant changes in diversity or composition of bacterial communities across time, we identified significant rearrangements in their co-occurrence network structure. We found particularly drastic changes between the first and second time points. Co-occurrence analyses showed that the bacterial community changed from a less structured network at (t1) into modules with a non-random composition of taxonomic groups at (t2). We conclude that changes in bacterial communities undetected by standard diversity analyses can become evident when performing co-occurrence network analyses. We also postulate possible functional associations among keystone groups suggested by biogeochemical processes. This study represents the first contribution on soil microbial diversity of a maize-based polyculture and shows its dynamic nature in short-term scales.

19.
Front Microbiol ; 6: 603, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157427

RESUMO

Multicellularity has emerged and continues to emerge in a variety of lineages and under diverse environmental conditions. In order to attain individuality and integration, multicellular organisms must exhibit spatial cell differentiation, which in turn allows cell aggregates to robustly generate traits and behaviors at the multicellular level. Nevertheless, the mechanisms that may lead to the development of cellular differentiation and patterning in emerging multicellular organisms remain unclear. We briefly review two conceptual frameworks that have addressed this issue: the cooperation-defection framework and the dynamical patterning modules (DPMs) framework. Then, situating ourselves in the DPM formalism first put forward by S. A. Newman and collaborators, we state a hypothesis for cell differentiation and arrangement in cellular masses of emerging multicellular organisms. Our hypothesis is based on the role of the generic cell-to-cell communication and adhesion patterning mechanisms, which are two fundamental mechanisms for the evolution of multicellularity, and whose molecules seem to be well-conserved in extant multicellular organisms and their unicellular relatives. We review some fundamental ideas underlying this hypothesis and contrast them with empirical and theoretical evidence currently available. Next, we use a mathematical model to illustrate how the mechanisms and assumptions considered in the hypothesis we postulate may render stereotypical arrangements of differentiated cells in an emerging cellular aggregate and may contribute to the variation and recreation of multicellular phenotypes. Finally, we discuss the potential implications of our approach and compare them to those entailed by the cooperation-defection framework in the study of cell differentiation in the transition to multicellularity.

20.
Front Microbiol ; 6: 143, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25767468

RESUMO

The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic ecology. The main challenge for the synthetic ecology is that consortia are frequently unstable, largely because evolution by constituent members affects their interactions, which are the basis of collective metabolic functionality. Current practices in modeling consortia largely consider interactions as fixed circuits of chemical reactions, which greatly increases their tractability. This simplification comes at the cost of essential biological realism, stripping out the ecological context in which the metabolic actions occur and the potential for evolutionary change. In other words, evolutionary stability is not engineered into the system. This realization highlights the necessity to better identify the key components that influence the stable coexistence of microorganisms. Inclusion of ecological and evolutionary principles, in addition to biophysical variables and stoichiometric modeling of metabolism, is critical for microbial consortia design. This review aims to bring ecological and evolutionary concepts to the discussion on the stability of microbial consortia. In particular, we focus on the combined effect of spatial structure (connectivity of molecules and cells within the system) and ecological interactions (reciprocal and non-reciprocal) on the persistence of microbial consortia. We discuss exemplary cases to illustrate these ideas from published studies in evolutionary biology and biotechnology. We conclude by making clear the relevance of incorporating evolutionary and ecological principles to the design of microbial consortia, as a way of achieving evolutionarily stable and sustainable systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA