RESUMO
This study evaluated the in vitro susceptibility of Trichosporon asahii strains to diphenyl diselenide (DPDS) and ebselen (EBS) alone and in combination with amphotericin B (AMB), fluconazole (FCZ), itraconazole (ITZ) and caspofungin (CAS) using the microdilution method. EBS showed in vitro activity against T asahii strains with minimal inhibitory concentration (MIC) ranged from 0.25 to 8.0 µg/mL. For DPDS, the MIC ranged from 8.0 to 64 µg/mL. The combinations demonstrating the greatest synergism rate against fluconazole-resistant T asahii strains were the following: CAS + DPDS (96.67%), AMB + DPDS (93.33%), FCZ + DPDS (86.67%) and ITZ + DPDS (83.33%). The combinations AMB + DPDS and AMB + EBS exhibited the highest synergism rate against the fluconazole-susceptible (FS) T asahii strains (90%). Antagonism was observed in the following combinations: FCZ + EBS (80%) and FCZ + DPDS (13.33%) against the FS strains, and ITZ + EBS (20%) against the FR strains. Our findings suggest that the antimicrobial activity of DPDS and EBS against T. asahii and its use as an adjuvant therapy with antifungal agents warrant in vivo experimental investigation.
Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Derivados de Benzeno/farmacologia , Agonismo de Drogas , Sinergismo Farmacológico , Compostos Organosselênicos/farmacologia , Trichosporon/efeitos dos fármacos , Isoindóis , Testes de Sensibilidade MicrobianaRESUMO
The in vitro susceptibility of 105 clinical and environmental strains of Aspergillus fumigatus and Aspergillus flavus to antifungal drugs, such as amphotericin B, azoles, and echinocandins was evaluated by the broth microdilution method proposed by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Following the EUCAST-proposed breakpoints, 20% and 25% of the clinical and environmental isolates of A. fumigatus, respectively, were found to be resistant to itraconazole (Minimal Inhibitory Concentration, MIC>2.0mg/L). Voriconazole showed good activity against A. fumigatus and A. flavus strains, except for one clinical strain of A. fumigatus whose MIC was 4.0mg/L. Posaconazole (≤0.25mg/L) also showed appreciable activity against both species of Aspergillus, except for six A. fumigatus strains with relatively higher MICs (0.5mg/L). The MICs for Amphotericin B ranged from 0.06 to 1.0mg/L for A. fumigatus, but were much higher (0.5-8.0mg/L) for A. flavus. Among the echinocandins, caspofungin showed a geometric mean of 0.078 and 0.113 against the clinical and environmental strains of A. flavus, respectively, but had elevated minimal effective concentrations (MECs) for seven of the A. fumigatus strains. Anidulafungin and micafungin exhibited considerable activity against both A. fumigatus and A. flavus isolates, except for one environmental isolate of A. fumigatus that showed an MEC of 1mg/L to micafungin. Our study proposes that a detailed investigation of the antifungal susceptibility of the genus Aspergillus from different regions of Brazil is necessary for establishing a response profile against the different classes of antifungal agents used in the treatment of aspergillosis.