Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci. agric ; 79(5): e20200277, 2022. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1341697

RESUMO

Physalis is an herbaceous species native to the Andes region. Currently, it is cultivated in various Brazilian states due to the economic interest of growers for this new fruit. Physalis plants grown in the field showed symptoms of shoot proliferation, leaf malformation, and chlorosis. Since these symptoms are commonly induced by phytoplasmas, this study investigated to confirm the presence of these prokaryotes in symptomatic plants. After DNA extraction from symptomatic and asymptomatic plants, phytoplasmas were found in all affected plants through the nested PCR. Examination by transmission electron microscopy (TEM) using appropriately prepared segments of leaf veins allowed the visualization of typical pleomorphic cells of phytoplasmas in the phloem of symptomatic plants. The computer-simulated RFLP patterns and the phylogenetic analysis allowed identifying the detected phytoplasmas as a 'Candidatus Phytoplasma fraxini'-related strain belonging to the 16SrVII-B subgroup. Moreover, physalis was identified as an additional host species for phytoplasmas in the 16SrVII group, expanding the current knowledge on the host range of phytoplasmas in this group.


Assuntos
Physalis/microbiologia , Floema/microbiologia , Doenças por Fitoplasmas/genética , Reação em Cadeia da Polimerase , Microscopia Eletrônica de Transmissão
2.
Sci. agric ; 79(3): e20200321, 2022. ilus
Artigo em Inglês | VETINDEX | ID: biblio-1290200

RESUMO

Acerola bushes were observed showing symptoms of shoot proliferation, generalized stunting, yellowing and decline. Since these symptoms are typically induced by phytoplasmas, this survey was carried out with the aim of detecting, identifying and classifying the supposed phytoplasma present in symptomatic bushes. Total DNA was extracted from symptomatic and asymptomatic samples and used in nested PCR conducted by the primer pairs R16mF2/mR1 followed by R16F2n/R2. Amplifications of expected genomic fragments of 1.2 kb revealed the presence of phytoplasma in 73 % of the symptomatic samples. Molecular analyses, using computer-simulated RFLP patterns, similarity coefficient calculation and phylogenetic analysis allowed for classifying the bacterium as a 'Candidatus Phytoplasma pruni' - related strain (subgroup 16SrIII-F). The phytoplasma induced the same symptoms in healthy acerola plants inoculated by grafting and showed molecular identity with the strain identified in naturally infected bushes. Although various strains belonging to distinct subgroups within the 16SrIII group have been previously identified in Brazil, this is the first report of the presence of a representative of the 16SrIII-F subgroup in the Brazilian agroecosystem. Considering that phytoplasmas can be systemically distributed throughout the plant and acerola plants are vegetatively propagated, it is recommended that propagation material be obtained from mother plants free of the pathogen.


Assuntos
Tenericutes , Malpighiaceae/microbiologia , Doenças por Fitoplasmas/genética , Reação em Cadeia da Polimerase
3.
Plant Dis ; 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33174795

RESUMO

Olive trees exhibiting slow development, yellowing, and high intensity of shoot proliferation with small leaves were observed in commercial plantings, in the municipality of Extrema, Minas Gerais (MG) state in 2015. The incidence of symptomatic plants was about 70% and diseased trees presented yield reduction. Here we report the association of symptomatic olive trees with a phytoplasma and describe its molecular identification. Symptomatic plants (38 trees) were sampled in three growing areas located in the same municipality. The samples consisted of bunch of leaves and young shoots. The total DNA was extracted using DNeasy® Plant Mini Kit (Qiagen, Hilden, Germany). Phytoplasma detection was conducted by nested PCR with primers P1/16S-SR (Lee et al. 2004) followed by R16F2n/R16R2 (Gundersen and Lee 1996). PCR assays generated amplicons (~1.2 kb) from 28 trees out of 38 symptomatic plants, confirming the association of phytoplasma with diseased plants. The disease was named olive witches' broom. The genomic fragments amplified by nested PCR were cloned into Escherichia coli DH5α and sequenced. The sequence representative of the olive phytoplasma was designated OWB-Br01 (Olive Wiches' Broom-Brazil 01) and deposited in GenBank under accession number MH141985. This sequence shared 99% sequence identity with phytoplasmas affiliated with 16SrVII group. According to the iPhyClassifier online tool (Zhao et al. 2009) the olive witches'-broom phytoplasma was classified as a variant of subgroup 16SrVII-B with a pattern similarity coefficient of 0.99. The phylogenetic tree showed that OWB-Br01 phytoplasma emerges from the same branch of the reference phytoplasma of the 16SrVII-B subgroup (Erigeron witchesá¾½-broom phytoplasma - GenBank AY034608), indicating that the olive tree phytoplasma is a member of the 16SrVII-B subgroup. The pathogenicity test was performed with 28 healthy plants (cultivar Arbequina) grown in pots, which were grafted by simple english forklift with scions obtained from olive plants (Arbequina) six years old, naturally infected by the phytoplasma. The initial symptoms were observed four months after grafting and at eight months 22 grafted plants exhibited slow growth, yellowing, and small leaves as those naturally observed in the fields. Molecular characterization allowed identify the phytoplasma as a member of the 16SrVII-B subgroup. In Brazil, representatives of the 16SrVII group were previously reported in association with diverse botanical species. Thus, a strain of 16SrVII-C subgroup was identified in sunn hemp (Flôres et al. 2013); the reference phytoplasma of 16SrVII-D subgroup was found in erigeron plants (Flôres et al. 2015); and the representative of 16SrVII-F was detected in the wild species Vernonia brasiliana. (Fugita et al. 2017). Specifically regarding subgroup 16SrVII-B, the reference phytoplasma of this subgroup was described from erigeron and periwinkle (Barros et al. 2002), while other members of this subgroup were reported in cauliflower (Pereira et al. 2016a) and ming aralia (Pereira et al. 2016b). The disease here studied is a threat since olive planting is in large expansion in Brazil. A potential control option could be use of propagative material from sources free of the pathogen. Based on our findings, olive tree represents a new host for subgroup 16SrVII-B phytoplasma, which is different from 16Sr groups previously reported as associated with olive witches' broom in other countries.

4.
Sci. agric. ; 76(3): 232-236, May-June 2019. ilus
Artigo em Inglês | VETINDEX | ID: vti-740874

RESUMO

Momordica charantia (bitter melon) presents two distinct types or varieties, known as wild type and commercial type. Plants of the wild type are hosts of a phytoplasma of the group 16SrIII-J, which is associated with a disease known as witches broom. However, this disease has not yet been reported in commercial bitter melon. Thus, symptomatic plants of the commercial type were analyzed in order to demonstrate the association between phytoplasmas and disease. In further assays, strains found in symptomatic plants of the commercial type were subjected to analysis of sequences of the secY gene to determine the extent of genetic diversity. Amplification of DNA fragments from genes 16Sr rRNA (1.2Kb) and secY (1.6Kb) revealed association of phytoplasma with symptomatic plants of the commercial type. Virtual Restriction Fragment Length Polymorphism (RFLP) analysis identified this phytoplasma as a member of the subgroup 16SrIII-J. Phylogenetic analysis showed that the phytoplasma was closely related to the representative of the 16SrIII-J subgroup. Molecular analysis indicated that the secY gene, in spite of the greater genetic variation compared with 16S rRNA gene, did not separate strains of the phytoplasma of the subgroup 16SrIII-J among those strains present in M. charantia.(AU)

5.
Sci. agric ; 76(3): 232-236, May-June 2019. ilus
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1497781

RESUMO

Momordica charantia (bitter melon) presents two distinct types or varieties, known as wild type and commercial type. Plants of the wild type are hosts of a phytoplasma of the group 16SrIII-J, which is associated with a disease known as witches’ broom. However, this disease has not yet been reported in commercial bitter melon. Thus, symptomatic plants of the commercial type were analyzed in order to demonstrate the association between phytoplasmas and disease. In further assays, strains found in symptomatic plants of the commercial type were subjected to analysis of sequences of the secY gene to determine the extent of genetic diversity. Amplification of DNA fragments from genes 16Sr rRNA (1.2Kb) and secY (1.6Kb) revealed association of phytoplasma with symptomatic plants of the commercial type. Virtual Restriction Fragment Length Polymorphism (RFLP) analysis identified this phytoplasma as a member of the subgroup 16SrIII-J. Phylogenetic analysis showed that the phytoplasma was closely related to the representative of the 16SrIII-J subgroup. Molecular analysis indicated that the secY gene, in spite of the greater genetic variation compared with 16S rRNA gene, did not separate strains of the phytoplasma of the subgroup 16SrIII-J among those strains present in M. charantia.

6.
Sci. agric. ; 76(1): 47-50, Jan.-Feb.2019. ilus, tab
Artigo em Inglês | VETINDEX | ID: vti-736407

RESUMO

Sesame (Sesamum indicum L.) plants exhibiting symptoms of phyllody disease were observed in commercial fields in Paraguay. The symptoms were indicative of infection by phytoplasmas. Thus, the present study investigated the association between affected plants and phytoplasma, which was later analyzed using molecular and phylogenetic methods. Total DNA was extracted from symptomatic and asymptomatic plants and used in nested PCR assays using primers R16SN910601/R16SN011119 and R16F2n/16R2. Amplified products of 1.2 Kb revealed the presence of phytoplasma in all diseased plants, and electron microscopy confirmed the presence of phytoplasmas within phloem vessels. Nucleotide sequences from sesame phytoplasma shared 99 % similarity with phytoplasmas belonging to group 16SrI. Computer-simulated RFLP indicated that the detected phytoplasma is representative of the 16SrI-B, therefore, a Candidatus Phytoplasma asteris-related strain. Phylogenetic analysis was in agreement with virtual RFLP. Our findings expand the current knowledge regarding distribution of representatives of the aster yellows group in a new agroecosystem and implicate sesame as a new host of 16SrI-B phytoplasma in Latin America.(AU)


Assuntos
Sesamum , Tenericutes , Filogenia , Floema/microbiologia , Reação em Cadeia da Polimerase , Paraguai
7.
Sci. agric ; 76(1): 47-50, Jan.-Feb.2019. ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1497755

RESUMO

Sesame (Sesamum indicum L.) plants exhibiting symptoms of phyllody disease were observed in commercial fields in Paraguay. The symptoms were indicative of infection by phytoplasmas. Thus, the present study investigated the association between affected plants and phytoplasma, which was later analyzed using molecular and phylogenetic methods. Total DNA was extracted from symptomatic and asymptomatic plants and used in nested PCR assays using primers R16SN910601/R16SN011119 and R16F2n/16R2. Amplified products of 1.2 Kb revealed the presence of phytoplasma in all diseased plants, and electron microscopy confirmed the presence of phytoplasmas within phloem vessels. Nucleotide sequences from sesame phytoplasma shared 99 % similarity with phytoplasmas belonging to group 16SrI. Computer-simulated RFLP indicated that the detected phytoplasma is representative of the 16SrI-B, therefore, a Candidatus Phytoplasma asteris-related strain. Phylogenetic analysis was in agreement with virtual RFLP. Our findings expand the current knowledge regarding distribution of representatives of the aster yellows group in a new agroecosystem and implicate sesame as a new host of 16SrI-B phytoplasma in Latin America.


Assuntos
Filogenia , Floema/microbiologia , Sesamum , Tenericutes , Paraguai , Reação em Cadeia da Polimerase
8.
Int J Syst Evol Microbiol ; 68(3): 962-966, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458464

RESUMO

Symptoms of fruit phyllody and slow growth, which are suggestive of phytoplasma infection, were observed in strawberry plants cultivated in commercial fields. In order to provide evidence of association of phytoplasma with affected plants, assays for detecting and identifying were performed through computer-simulated restriction fragment length polymorphism (RFLP) and phylogenetic analysis. Total DNA was extracted from symptomatic and asymptomatic samples and used as template in nested PCR primed by the primers P1/Tint followed by R16F2n/16R2. Amplified DNA fragments of 1.2 kb from the 16S rRNA gene revealed the presence of phytoplasma in all symptomatic samples. Molecular detection was confirmed by electron transmission microscopy, which evidenced pleomorphic bodies in the phloem vessels. Nucleotide sequence representative of the strawberry phytoplasma shared 97.2 to 99 % similarity with phytoplasmas currently classified as members of the distinct subgroups within the 16SrXIII group. Similarity coefficient (F) values ranged from 0.70 to 0.92, indicating that strawberry phytoplasma delineates a new strain in addition to 'Candidatus Phytoplasma hispanicum'-related strains. The evolutionary tree displayed that this strain emerges as a new branch in relation to those previously described. The novel strain, designated SFP (strawberry fruit phyllody) phytoplasma represents the new 16SrXIII-J subgroup and its sequence, denominated SFP-Br02, was deposited in the GenBank database (EU719108). These findings contribute for the knowledge of the genetic diversity existing among members of the group 16SrXIII and establishes strawberry as an additional host of representatives of this group in Brazil.


Assuntos
Fragaria/microbiologia , Filogenia , Phytoplasma/classificação , Doenças das Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , Técnicas de Tipagem Bacteriana , Brasil , Primers do DNA , DNA Bacteriano/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Int J Syst Evol Microbiol ; 67(8): 3122-3126, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28126045

RESUMO

Vernonia brasiliana is a wild perennial shrub frequently found in pasture areas. Plants of this species have been observed displaying typical symptoms induced by phytoplasmas, which were characterized by shoot proliferation, deformed leaves and leaf chlorosis. The present study confirmed the presence of phytoplasmas in association with affected plants. Sequencing of the 16S rRNA gene, computer-simulated RFLP analysis and phylogenetic analysis revealed that one of the phytoplasmas identified was representative of novel subgroup. The sequence identity scores between the novel strain and those of previously described 'CandidatusPhytoplasma fraxini'-related strains was 99 %, while similarity coefficient values were lower than 0.97. These findings provide support to delineate the phytoplasma found in vernonia plants as a reference phytoplasma for a novel subgroup designated 16SrVII-F. This representative of the novel subgroup was denominated VbSP phytoplasma (Vernonia brasiliana Shoot Proliferation; GenBank KX342018). The results of the present study revealed V. brasiliana to be a host of phytoplasmas, evidenced a novel phytoplasma associated with phytoplasmal disease in Brazil and extended the knowledge of the genetic diversity existing within the 16SrVII group.


Assuntos
Filogenia , Phytoplasma/classificação , Doenças das Plantas/microbiologia , Vernonia/microbiologia , Técnicas de Tipagem Bacteriana , Brasil , DNA Bacteriano/genética , Phytoplasma/genética , Phytoplasma/isolamento & purificação , Folhas de Planta/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Int J Syst Evol Microbiol ; 65(8): 2761-2765, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25911533

RESUMO

Erigeron sp. plants showing symptoms of witches' broom and stunting were found near orchards of passion fruit in São Paulo state, Brazil. These symptoms were indicative of infection by phytoplasmas. Thus, the aim of this study was to detect and identify possible phytoplasmas associated with diseased plants. Total DNA was extracted from symptomatic and asymptomatic plants and used in nested PCR conducted with the primer pairs P1/Tint and R16F2n/16R2. Amplification of genomic fragments of 1.2 kb from the 16S rRNA gene confirmed the presence of phytoplasma in all symptomatic samples. The sequence identity scores between the 16S rRNA gene of the phytoplasma strain identified in the current study and those of previously reported 'Candidatus Phytoplasma fraxini'-related strains ranged from 98% to 99% indicating the phytoplasma to be a strain affiliated with 'Candidatus Phytoplasma fraxini'. The results from a phylogenetic analysis and virtual RFLP analysis of the 16S rRNA gene sequence with 17 restriction enzymes revealed that the phytoplasma strain belongs to the ash yellows phytoplasma group (16SrVII); the similarity coefficient of RFLP patterns further suggested that the phytoplasma represents a novel subgroup, designated 16SrVII-D. The representative of this new subgroup was named EboWB phytoplasma (Erigeron bonariensis Witches' Broom).


Assuntos
Cytisus , Erigeron/microbiologia , Filogenia , Phytoplasma/classificação , Doenças das Plantas/microbiologia , Brasil , DNA Bacteriano/genética , Dados de Sequência Molecular , Phytoplasma/genética , Phytoplasma/isolamento & purificação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Int J Syst Evol Microbiol ; 61(Pt 6): 1454-1461, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20622054

RESUMO

Symptoms resembling giant calyx, a graft-transmissible disease, were observed on 1-5 % of eggplant (aubergine; Solanum melongena L.) plants in production fields in Sao Paulo state, Brazil. Phytoplasmas were detected in 12 of 12 samples from symptomatic plants that were analysed by a nested PCR assay employing 16S rRNA gene primers R16mF2/R16mR1 followed by R16F2n/R16R2. RFLP analysis of the resulting rRNA gene products (1.2 kb) indicated that all plants contained similar phytoplasmas, each closely resembling strains previously classified as members of RFLP group 16SrIII (X-disease group). Virtual RFLP and phylogenetic analyses of sequences derived from PCR products identified phytoplasmas infecting eggplant crops grown in Piracicaba as a lineage of the subgroup 16SrIII-J, whereas phytoplasmas detected in plants grown in Bragança Paulista were tentatively classified as members of a novel subgroup 16SrIII-U. These findings confirm eggplant as a new host of group 16SrIII-J phytoplasmas and extend the known diversity of strains belonging to this group in Brazil.


Assuntos
Técnicas de Tipagem Bacteriana , Phytoplasma/classificação , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , Solanum melongena/microbiologia , Brasil , Análise por Conglomerados , Biologia Computacional/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genótipo , Dados de Sequência Molecular , Filogenia , Phytoplasma/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA