Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 707: 136087, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31874397

RESUMO

Terrestrial mud volcanoes are unique structures driven by tectonic pressure and fluids from the deep subsurface. These structures are mainly found in active tectonic zones, such as the area near the Los Bajos Fault in Trinidad. Here we report a chemical and microbiological characterization of three mud volcanoes, which included analyses of multiple liquid and solid samples from the mud volcanoes. Our study confirms previous suggestions that at least some of the mud volcano fluids are a mixture of deeper salt-rich water and surficial/precipitation water. No apparent water quality differences were found between sampling sites north and south of a major geological fault line. Microbiological analyses revealed diverse communities, both aerobic and anaerobic, including sulfate reducers, methanogens, carbon dioxide fixing and denitrifying bacteria. Several identified species were halophilic and likely derived from the deeper salt-rich subsurface water, while we also cultivated pathogenic species from the Vibrionaceae, Enterobacteriaceae, Shewanellaceae, and Clostridiaceae. These microorganisms were likely introduced into the mud volcano fluids both from surface water or shallow ground-water, and perhaps to a more minor degree by rain water. The identified pathogens are a major health concern that needs to be addressed.


Assuntos
Chuva , Água , Bactérias , Sedimentos Geológicos , Filogenia , Trinidad e Tobago
2.
Environ Sci Pollut Res Int ; 22(2): 1366-79, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25142345

RESUMO

Dietary exposure to polycyclic aromatic hydrocarbons (PAHs) may pose serious threats to human health. However, within the Caribbean, quantitative assessments regarding the risks associated with dietary PAH exposure remain sparse. This study investigated PAH presence in edible biota from the Caroni Swamp and quantitatively assessed the potential health threat to human consumers. Mangrove oysters (Crassostrea rhizophorae) and Madamango sea catfish (Cathorops spixii) collected from seven sites in the Caroni Swamp were analysed for 16 priority PAHs. Total PAH levels ranged from 109 ± 18.4 to 362 ± 63.0 ng/g dry wt. in Crassostrea rhizophorae and 7.5 ± 0.9 to 43.5 ± 25.5 ng/g dry wt. in Cathorops spixii (average ± standard deviation). Benzo[a]pyrene levels in Crassostrea rhizophorae at all sites exceeded international guidelines from British Colombia (Canada) and the European Union (EU). Incremental lifetime cancer risk (ILCR) values based on the ingestion of Crassostrea rhizophorae ranged from 8.4 × 10(-6) to 1.6 × 10(-5) and slightly exceeded the commonly used 1 × 10(-6) acceptable level of risk. Information from this study is important in understanding the potential health risks posed by PAHs, it is critical towards the protection of public health, and it serves as a useful baseline for comparison with future work.


Assuntos
Crassostrea/química , Contaminação de Alimentos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Alimentos Marinhos/análise , Animais , Peixes-Gato/metabolismo , Qualidade de Produtos para o Consumidor , Crassostrea/metabolismo , Humanos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Índias Ocidentais , Áreas Alagadas
3.
Life (Basel) ; 4(4): 566-85, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25370529

RESUMO

Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

4.
Environ Monit Assess ; 186(3): 1961-76, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24201558

RESUMO

Metals can have significant impacts on inhabitants of mangrove swamps as well as consumers of mangrove-associated fauna. Yet, for several Caribbean islands, assessments regarding the impact of metals on such ecosystems are particularly sparse. The present study investigated the distribution and potential impact of Cd, Cr, Cu, Ni, Pb and Zn in the Caroni Swamp, Trinidad and Tobago's largest mangrove ecosystem. Surface sediments and mangrove oysters (Crassostrea rhizophorae) from 10 sites in the swamp were analysed for the 6 identified metals. The concentration ranges (in µg/g dry wt.) of metals in sediments from Caroni Swamp were: Zn (113.4-264.6), Cr (27-69.7), Ni (10.7-41.1) and Cu (11-40.7). Based on Canadian Sediment Quality Guidelines (CSQGs), metals in sediments posed a low to medium risk to aquatic life. The concentration ranges (in µg/g wet wt.) for metals in Crassostrea rhizophorae tissues were: Zn (123.2-660), Cu (4.2-12.3), Ni (0.1-5.5), Pb (0.1-0.9), Cr (0.2-0.3) and Cd (0.1-0.2). Multiple evaluations indicated that zinc posed a potential threat to the health of oyster consumers. Information from this study is vital for managing the Caroni Swamp, safeguarding the health of consumers of shellfish on this Caribbean island and serving as a useful baseline for future local and regional risk assessments.


Assuntos
Crassostrea/metabolismo , Monitoramento Ambiental , Sedimentos Geológicos/química , Metais/metabolismo , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Animais , Metais/análise , Trinidad e Tobago , Poluentes Químicos da Água/análise
5.
Astrobiology ; 11(3): 241-58, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21480792

RESUMO

Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 10(7) cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.


Assuntos
Ecossistema , Microbiologia Ambiental , Hidrocarbonetos , Análise por Conglomerados , Genes Arqueais , Genes Bacterianos , Genes de RNAr , Hidrocarbonetos/química , Dados de Sequência Molecular , Trinidad e Tobago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA