RESUMO
The SAFER (Simple Algorithm for Evapotranspiration Retrieving) algorithm and the radiation use efficiency (RUE) model were coupled to test large-scale remote sensing environmental indicators in Brazilian biomes. MODIS MOD13Q1 reflectance product and gridded weather data for the year 2016 were used to demonstrate the suitability of the algorithm to monitor the dynamics of environmental remote sensing indicators along a year in the Brazilian biomes, Amazon, Caatinga, Cerrado, Pantanal, Atlantic Forest, and Pampa. Significant spatial and temporal variations in precipitation (P), actual evapotranspiration (ET), and biomass production (BIO) yielded differences on water balance (WB = P-ET) and water productivity (WP = ET/BIO). The highest WB and WP differences were detected in the wettest biomes, Amazon, Atlantic Forest, and Pampa, when compared with the driest biome, Caatinga. Rainfall distribution along the year affected the magnitude of the evaporative fraction (ETf), i.e., the ET to reference evapotranspiration (ET0) ratio. However, there was a gap between ETf and WB, which may be related to the time needed for recovering good soil moisture conditions after rainfalls. For some biomes, BIO related most to the levels of absorbed photosynthetically active radiation (Amazon and Atlantic Forest), while for others, BIO followed most the soil moisture levels, depicted by ETf (Caatinga, Cerrado, Pantanal, and Pampa). The large-scale modeling showed suitability for monitoring the water and vegetation conditions, making way to detect anomalies for specific periods along the year by using historical images and weather data, with strong potential to support public policies for management and conservation of natural resources and with possibilities for replication of the methods in other countries.
Assuntos
Indicadores Ambientais , Lepidópteros , Animais , Brasil , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental , Ecossistema , Solo , Água , Tempo (Meteorologia)RESUMO
With the expanding use of thermal assessment techniques in beef cattle, infrared thermography has become a promising tool for assessing the environment for animal thermal comfort. Goals of this study were: (1) to evaluate cattle thermal comfort in agroforestry systems with different shade availability (2) to verify the spatiotemporal variations of infrared temperature inside agroforestry systems, and; (3) to test infrared thermography as a potential tool to assess animal thermal comfort indices in agroforestry systems. A trial was carried out between June 2015 and February 2016, covering Central-Brazil's dry winter and rainy summer seasons, respectively. The experimental area of Embrapa Beef Cattle is located in Campo Grande (Mato Grosso do Sul), coordinates 20°24'53â³ S, 54°42'26â³ W and 558 m altitude. The 12 ha plot has two agroforestry systems varying shade availability. Traditional Black Globe Temperature and Humidity Index, Heat Load Index and Radiation Thermal Load were determined, from measurements using digital thermo-hygrometers, with datalogger. Surface temperature and humidity of tree canopies and pasture were determined using an infrared thermographic camera. Results show spatiotemporal variations in infrared temperature. This means that the environment inside agroforestry systems is not homogeneously comfortable for cattle, and the system with the lowest shade availability has the greatest heat accumulation area. Weak to strong associations were identified between infrared variables and thermal comfort indices (0.08 = r ≤ 0.75). Positive relationships were also obtained and equally well explained by the Black Globe Temperature and Humidity Index and Heat Load Index (0.55 = R2 ≤ 0.94). We conclude that infrared thermography can be used as a tool to assess thermal comfort indices in agroforestry systems and to determine onset of animal thermal stress from environment and heat body accumulation.
Assuntos
Criação de Animais Domésticos/métodos , Bovinos/fisiologia , Termografia/métodos , Sensação Térmica , Árvores , Animais , Brasil , Florestas , Resposta ao Choque Térmico , Umidade , Raios Infravermelhos , Microclima , TemperaturaRESUMO
We investigated the fluvial geochemistry of two catchments at different stages in the forest recovery process which have been a focus of an Environmental Services Payment (ESP) program in Brazil. The Posses (PS) and Salto de Cima (SC) catchments (1200 ha and 1500 ha, respectively) are situated in the municipality of Extrema, Minas Gerais state. Their streams flow into the Jaguari River that supplies part of the water demand of the São Paulo metropolitan area. Samples were collected for chemical analysis and physical-chemical field measures every 2 weeks from January to December 2017. An important pollution point source was discovered in the PS stream related to bovine urine and feces, as well another unidentified source that can be related to a small food processing industry and/or a small fish farm. At the SC stream, on the other hand, there was clear evidence of domestic sewage input. This preliminary study confirmed a limited improvement of the stream water quality in response to recovery of the forest vegetation. Therefore, we recommend that in addition to enhanced monitoring to help distinguish biogeochemical sources and the benefits of land conservation practices, the ESP program should consider controlling point source pollution to accomplish its purpose.