Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125567

RESUMO

Breast cancer is a prevalent malignancy characterized by the uncontrolled growth of glandular epithelial cells, which can metastasize through the blood and lymphatic systems. Microcalcifications, small calcium deposits within breast tissue, are critical markers for early detection of breast cancer, especially in non-palpable carcinomas. These microcalcifications, appearing as small white spots on mammograms, are challenging to identify due to potential confusion with other tissues. This study hypothesizes that a hybrid feature extraction approach combined with Convolutional Neural Networks (CNNs) can significantly enhance the detection and localization of microcalcifications in mammograms. The proposed algorithm employs Gabor, Prewitt, and Gray Level Co-occurrence Matrix (GLCM) kernels for feature extraction. These features are input to a CNN architecture designed with maxpooling layers, Rectified Linear Unit (ReLU) activation functions, and a sigmoid response for binary classification. Additionally, the Top Hat filter is used for precise localization of microcalcifications. The preprocessing stage includes enhancing contrast using the Volume of Interest Look-Up Table (VOI LUT) technique and segmenting regions of interest. The CNN architecture comprises three convolutional layers, three ReLU layers, and three maxpooling layers. The training was conducted using a balanced dataset of digital mammograms, with the Adam optimizer and binary cross-entropy loss function. Our method achieved an accuracy of 89.56%, a sensitivity of 82.14%, and a specificity of 91.47%, outperforming related works, which typically report accuracies around 85-87% and sensitivities between 76 and 81%. These results underscore the potential of combining traditional feature extraction techniques with deep learning models to improve the detection and localization of microcalcifications. This system may serve as an auxiliary tool for radiologists, enhancing early detection capabilities and potentially reducing diagnostic errors in mass screening programs.

2.
Biomimetics (Basel) ; 9(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921198

RESUMO

This study presents the design, simulation, and prototype creation of a quadruped robot inspired by the Acinonyx jubatus (cheetah), specifically designed to replicate its distinctive walking, trotting, and galloping locomotion patterns. Following a detailed examination of the cheetah's skeletal muscle anatomy and biomechanics, a simplified model of the robot with 12 degrees of freedom was conducted. The mathematical transformation hierarchy model was established, and direct kinematics were simulated. A bio-inspired control approach was introduced, employing a Central Pattern Generator model based on Wilson-Cowan neural oscillators for each limb, interconnected by synaptic weights. This approach assisted in the simulation of oscillatory signals for relative phases corresponding to four distinct gaits in a system-level simulation platform. The design phase was conducted using CAD software (SolidWorks 2018), resulting in a 1:3-scale robot mirroring the cheetah's actual proportions. Movement simulations were performed in a virtual mechanics software environment, leading to the construction of a prototype measuring 35.5 cm in length, 21 cm in width, 27 cm in height (when standing), and weighing approximately 2.1 kg. The experimental validation of the prototype's limb angular positions and trajectories was achieved through the image processing of video-recorded movements, demonstrating a high correlation (0.9025 to 0.9560) in joint angular positions, except for the knee joint, where a correlation of 0.7071 was noted. This comprehensive approach from theoretical analysis to practical implementation showcases the potential of bio-inspired robotics in emulating complex biological locomotion.

3.
Diagnostics (Basel) ; 13(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37998576

RESUMO

Breast cancer is a significant health concern for women, emphasizing the need for early detection. This research focuses on developing a computer system for asymmetry detection in mammographic images, employing two critical approaches: Dynamic Time Warping (DTW) for shape analysis and the Growing Seed Region (GSR) method for breast skin segmentation. The methodology involves processing mammograms in DICOM format. In the morphological study, a centroid-based mask is computed using extracted images from DICOM files. Distances between the centroid and the breast perimeter are then calculated to assess similarity through Dynamic Time Warping analysis. For skin thickness asymmetry identification, a seed is initially set on skin pixels and expanded based on intensity and depth similarities. The DTW analysis achieves an accuracy of 83%, correctly identifying 23 possible asymmetry cases out of 20 ground truth cases. The GRS method is validated using Average Symmetric Surface Distance and Relative Volumetric metrics, yielding similarities of 90.47% and 66.66%, respectively, for asymmetry cases compared to 182 ground truth segmented images, successfully identifying 35 patients with potential skin asymmetry. Additionally, a Graphical User Interface is designed to facilitate the insertion of DICOM files and provide visual representations of asymmetrical findings for validation and accessibility by physicians.

4.
Sensors (Basel) ; 21(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204151

RESUMO

Medical infrared thermography has proven to be a complementary procedure to physiological disorders, such as the diabetic foot. However, the technique remains essentially based on 2D images that display partial anatomy. In this context, a 3D thermal model provides improved visualization and faster inspection. This paper presents a 3D reconstruction method associated with temperature information. The proposed solution is based on a Structure from Motion and Multi-view Stereo approach, exploiting a set of multimodal merged images. The infrared images were obtained by automatically processing the radiometric data to remove thermal interferences, segment the RoI, enhance false-color contrast, and for multimodal co-registration under a controlled environment and a ∆T < 2.6% between the RoI and thermal interferences. The geometric verification accuracy was 77% ± 2%. Moreover, a normalized error was adjusted per sample based on a linear model to compensate for the curvature emissivity (error ≈ 10% near to 90°). The 3D models were displayed with temperature information and interaction controls to observe any point of view. The temperature sidebar values were assigned with information retrieved only from the RoI. The results have proven the feasibility of the 3D multimodal construction to be used as a promising tool in the diagnosis of diabetic foot.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Imageamento Tridimensional , Modelos Anatômicos , Movimento (Física) , Radiometria , Termografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA