Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA ; 326(21): 2161-2171, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874419

RESUMO

IMPORTANCE: The effect of high-flow oxygen therapy vs conventional oxygen therapy has not been established in the setting of severe COVID-19. OBJECTIVE: To determine the effect of high-flow oxygen therapy through a nasal cannula compared with conventional oxygen therapy on need for endotracheal intubation and clinical recovery in severe COVID-19. DESIGN, SETTING, AND PARTICIPANTS: Randomized, open-label clinical trial conducted in emergency and intensive care units in 3 hospitals in Colombia. A total of 220 adults with respiratory distress and a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen of less than 200 due to COVID-19 were randomized from August 2020 to January 2021, with last follow-up on February 10, 2021. INTERVENTIONS: Patients were randomly assigned to receive high-flow oxygen through a nasal cannula (n = 109) or conventional oxygen therapy (n = 111). MAIN OUTCOMES AND MEASURES: The co-primary outcomes were need for intubation and time to clinical recovery until day 28 as assessed by a 7-category ordinal scale (range, 1-7, with higher scores indicating a worse condition). Effects of treatments were calculated with a Cox proportional hazards model adjusted for hypoxemia severity, age, and comorbidities. RESULTS: Among 220 randomized patients, 199 were included in the analysis (median age, 60 years; n = 65 women [32.7%]). Intubation occurred in 34 (34.3%) randomized to high-flow oxygen therapy and in 51 (51.0%) randomized to conventional oxygen therapy (hazard ratio, 0.62; 95% CI, 0.39-0.96; P = .03). The median time to clinical recovery within 28 days was 11 (IQR, 9-14) days in patients randomized to high-flow oxygen therapy vs 14 (IQR, 11-19) days in those randomized to conventional oxygen therapy (hazard ratio, 1.39; 95% CI, 1.00-1.92; P = .047). Suspected bacterial pneumonia occurred in 13 patients (13.1%) randomized to high-flow oxygen and in 17 (17.0%) of those randomized to conventional oxygen therapy, while bacteremia was detected in 7 (7.1%) vs 11 (11.0%), respectively. CONCLUSIONS AND RELEVANCE: Among patients with severe COVID-19, use of high-flow oxygen through a nasal cannula significantly decreased need for mechanical ventilation support and time to clinical recovery compared with conventional low-flow oxygen therapy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04609462.


Assuntos
COVID-19/complicações , Intubação Intratraqueal/estatística & dados numéricos , Oxigenoterapia/métodos , Oxigênio/uso terapêutico , Insuficiência Respiratória/terapia , Idoso , Idoso de 80 Anos ou mais , COVID-19/terapia , Estado Terminal/mortalidade , Estado Terminal/terapia , Feminino , Humanos , Unidades de Terapia Intensiva , Intubação Intratraqueal/efeitos adversos , Masculino , Pessoa de Meia-Idade , Oxigenoterapia/instrumentação , Respiração Artificial , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/mortalidade , SARS-CoV-2 , Fatores de Tempo , Resultado do Tratamento
2.
Intensive Care Med ; 42(2): 211-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26578172

RESUMO

PURPOSE: Septic shock has been associated with microvascular alterations and these in turn with the development of organ dysfunction. Despite advances in video microscopic techniques, evaluation of microcirculation at the bedside is still limited. Venous-to-arterial carbon dioxide difference (Pv-aCO2) may be increased even when venous O2 saturation (SvO2) and cardiac output look normal, which could suggests microvascular derangements. We sought to evaluate whether Pv-aCO2 can reflect the adequacy of microvascular perfusion during the early stages of resuscitation of septic shock. METHODS: Prospective observational study including 75 patients with septic shock in a 60-bed mixed ICU. Arterial and mixed-venous blood gases and hemodynamic variables were obtained at catheter insertion (T0) and 6 h after (T6). Using a sidestream dark-field device, we simultaneously acquired sublingual microcirculatory images for blinded semiquantitative analysis. Pv-aCO2 was defined as the difference between mixed-venous and arterial CO2 partial pressures. RESULTS: Progressively lower percentages of small perfused vessels (PPV), lower functional capillary density, and higher heterogeneity of microvascular blood flow were observed at higher Pv-aCO2 values at both T0 and T6. Pv-aCO2 was significantly correlated to PPV (T0: coefficient -5.35, 95 % CI -6.41 to -4.29, p < 0.001; T6: coefficient, -3.49, 95 % CI -4.43 to -2.55, p < 0.001) and changes in Pv-aCO2 between T0 and T6 were significantly related to changes in PPV (R (2) = 0.42, p < 0.001). Absolute values and changes in Pv-aCO2 were not related to global hemodynamic variables. Good agreement between venous-to-arterial CO2 and PPV was maintained even after corrections for the Haldane effect. CONCLUSIONS: During early phases of resuscitation of septic shock, Pv-aCO2 could reflect the adequacy of microvascular blood flow.


Assuntos
Artérias/fisiopatologia , Dióxido de Carbono/sangue , Microcirculação/fisiologia , Choque Séptico/fisiopatologia , Veias/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Gasometria , Colômbia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA