RESUMO
Bet-hedging is an ecological risk-aversion strategy in which a population does not commit all its effort toward a single reproductive event or specific environmental condition, and instead spreads the risk to include multiple reproductive events or conditions. For aquatic invertebrates in dry wetlands, this often takes the form of some propagules hatching in the first available flood, while remaining propagules hatch in subsequent floods (the "hedge"); this better ensures that a subset of propagules will hatch in a flood of sufficient duration to successfully complete development. Harsh environmental conditions are believed to promote an increased reliance on bet-hedging. Bet-hedging studies have typically been restricted to single sites or single populations. Community-level assessments may provide more robust support for the range of hatching strategies that exist in nature. Here, we tested whether freshwater zooplankton assemblages inhabiting ephemeral and unpredictable wetlands of a semiarid zone of tropical Brazil employ hatching strategies suggestive of bet-hedging; few efforts have addressed bet-hedging in the tropics where the unique conditions may influence the strategy. We collected dry sediments from six ephemeral wetlands, and flooded them across a sequence of three hydrations under similar laboratory conditions to assess whether hatching patterns conform to some of the predictions of the bet-hedging theory. We found that taxa showing hatching patterns akin to bet-hedging associated with delayed hatching numerically dominated the assemblages that emerged from dry sediments, although there was large heterogeneity in the hatching rate among sites and across taxa. While some populations distributed their hatching across all three floods and committed most of their hatching fraction to the first hydration, others committed as much or more effort to the second hydration (the "hedge") or the third hydration (another substantial "hedge"). Thus, in the harsh study wetlands, hatching patterns akin to bet-hedging associated with delayed hatching were common and occurred at multiple temporal scales. Our community assessment found that a commitment to the "hedge" was greater than the current theory would predict. Our findings have broader implications; bet-hedger taxa seem especially well equipped to tolerate stress if conditions become harsher as environments change.
Assuntos
Áreas Alagadas , Zooplâncton , Animais , Brasil , Reprodução , Água DoceRESUMO
The efficiency of biodiversity assessments and biomonitoring studies is commonly challenged by limitations in taxonomic identification and quantification approaches. In this study, we assessed the effects of different taxonomic and numerical resolutions on a range of community structure metrics in invertebrate compositional data sets from six regions distributed across North and South America. We specifically assessed the degree of similarity in the metrics (richness, equitability, beta diversity, heterogeneity in community composition and congruence) for data sets identified to a coarse resolution (usually family level) and the finest taxonomic resolution practical (usually genus level, sometimes species or morphospecies) and by presence-absence and relative abundance numerical resolutions. Spearman correlations showed highly significant and positive associations between univariate metrics (richness and equitability) calculated for coarse- and finest-resolution datasets. Procrustes analysis detected significant congruence between composition datasets. Higher correlation coefficients were found for datasets with the same numerical resolutions regardless of the taxonomic level (about 90%), while the correlations for comparisons across numerical resolutions were consistently lower. Our findings indicate that family-level resolution can be used as a surrogate of finer taxonomic resolutions to calculate a range of biodiversity metrics commonly used to describe invertebrate community structure patterns in New World freshwater wetlands without significant loss of information. However, conclusions on biodiversity patterns derived from datasets with different numerical resolutions should be critically considered in studies on wetland invertebrates.
RESUMO
Analyses of biota at lower latitudes may presage impacts of climate change on biota at higher latitudes. Macroinvertebrate assemblages in depressional wetlands may be especially sensitive to climate change because weather-related precipitation and evapotranspiration are dominant ecological controls on habitats, and organisms of depressional wetlands are temperature-sensitive ectotherms. We aimed to better understand how wetland macroinvertebrate assemblages were structured according to geography and climate. To do so, we contrasted aquatic-macroinvertebrate assemblage structure (family level) between subtropical and temperate depressional wetlands of North and South America using presence-absence data from 264 of these habitats across the continents and more-detailed relative-abundance data from 56 depressional wetlands from four case-study locations (North Dakota and Georgia in North America; southern Brazil and Argentinian Patagonia in South America). Both data sets roughly partitioned wetland numbers equally between the two climatic zones and between the continents. We used ordination methods (PCA and NMDS) and tests of multivariate dispersion (PERMDISP) to assess the distribution and the homogeneity in variation in the composition of macroinvertebrate assemblages across climates and continents, respectively. We found that macroinvertebrate assemblage structures in the subtropical depressional wetlands of North and South America were similar to each other (at the family level), while assemblages in the North and South American temperate wetlands were unique from the subtropics, and from each other. Tests of homogeneity of multivariate dispersion indicated that family-level assemblage structures were more homogeneous in wetlands from the subtropical than the temperate zones. Our study suggests that ongoing climate change may result in the homogenization of macroinvertebrate assemblage structures in temperate zones of North and South America, with those assemblages becoming enveloped by assemblages from the subtropics. Biotic homogenization, more typically associated with other kinds of anthropogenic factors, may also be affected by climate change.