Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 146(14): 144311, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28411608

RESUMO

The guest-host intermolecular potentials for the valence excited states of Br2 in the tetrakaidecahedral(T) and pentakaidecahedral(P) clathrate cages have been calculated using ab initio local correlation methods. We find that the excited states are more strongly bound than the corresponding ground states even in the small T cage where bromine has a tight fit. The angular dependence of the interaction energies is quite anisotropic; this reflects in the corresponding electronic shifts where regions of maxima for blue-shifts in the T cage indicate the presence of halogen bonding. We predict a large temperature dependence of the electronic shifts and compare absolute values with recent experimental studies. This stringent test indicates the reliability of local correlation treatments to describe weak intermolecular forces in ground and excited states.

2.
J Chem Phys ; 143(9): 094305, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26342368

RESUMO

The performance of local correlation methods is examined for the interactions present in clusters of bromine with water where the combined effect of hydrogen bonding (HB), halogen bonding (XB), and hydrogen-halogen (HX) interactions lead to many interesting properties. Local methods reproduce all the subtleties involved such as many-body effects and dispersion contributions provided that specific methodological steps are followed. Additionally, they predict optimized geometries that are nearly free of basis set superposition error that lead to improved estimates of spectroscopic properties. Taking advantage of the local correlation energy partitioning scheme, we compare the different interaction environments present in small clusters and those inside the 5(12)6(2) clathrate cage. This analysis allows a clear identification of the reasons supporting the use of local methods for large systems where non-covalent interactions play a key role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA