Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 96(10): 4125-4135, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30272227

RESUMO

A major objective of pork producers is to reduce production cost. Feeding may account for over 75% of pork production costs. Thus, selecting pigs for feed efficiency (FE) traits is a priority in pig breeding programs. While in the Americas, pigs are typically fed high-input diets, based on corn and soybean meal (CS); in Western Europe, pigs are commonly fed diets based on wheat and barley with high amounts of added protein-rich coproducts (WB), e.g., from milling and seed-oil industries. These two feeding scenarios provided a realistic setting for investigating a specific type of genotype by environment interaction; thus, we investigated the genotype by feed interaction (GxF). In the presence of a GxF, different feed compositions should be considered when selecting for FE. This study aimed to 1) verify the presence of a GxF for FE and growth performance traits in different growth phases (starter, grower, and finisher) of 3-way crossbred growing-finishing pigs fed either a CS (547 boars and 558 gilts) or WB (567 boars and 558 gilts) diet; and 2) to assess and compare the expected responses to direct selection under the 2 diets and the expected correlated responses for one diet to indirect selection under the other diet. We found that GxF did not interfere in the ranking of genotypes under both diets for growth, protein deposition, feed intake, energy intake, or feed conversion rate. Therefore, for these traits, we recommend changing the diet of growing-finishing pigs from high-input feed (i.e., CS) to feed with less valuable ingredients, as WB, to reduce production costs and the environmental impact, regardless of which diet is used in selection. We found that GxF interfered in the ranking of genotypes and caused heterogeneity of genetic variance under both diets for lipid deposition (LD), residual energy intake (REI), and residual feed intake (RFI). Thus, selecting pigs under a diet different from the diet used for growing-finishing performance could compromise the LD in all growth phases, compromise the REI and RFI during the starter phase, and severely compromise the REI during the grower phase. In particular, when pigs are required to consume a WB diet for growing-finishing performance, pigs should be selected for FE under the same diet. Breeding pigs for FE under lower-input diets should be considered, because FE traits will become more important and lower-input diets will become more widespread in the near future.


Assuntos
Ração Animal/análise , Ingestão de Alimentos , Ingestão de Energia , Suínos/genética , Animais , Dieta/veterinária , Europa (Continente) , Feminino , Genótipo , Hordeum , Masculino , Fenótipo , Suínos/crescimento & desenvolvimento , Suínos/fisiologia , Triticum
2.
J Anim Breed Genet ; 135(3): 194-207, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29878493

RESUMO

Economic values (EVs) of traits, accounting for environmental impacts and risk preferences of farmers, are required to design breeding goals that contribute to both economic and environmental sustainability. The objective of this study was to assess the effects of incorporating environmental costs and the risk preferences of farmers on the EVs of pig breeding goal traits. A breeding goal consisting of both sow efficiency and production traits was defined for a typical Brazilian farrow-to-finish pig farm with 1,500 productive sows. A mean-variance utility function was employed for deriving the EVs at finishing pig level assuming fixed slaughter weight. The inclusion of risk and risk aversion reduces the economic weights of sow efficiency traits (17%) while increasing the importance of production traits (7%). For a risk-neutral producer, inclusion of environmental cost reduces the economic importance of sow efficiency traits (3%) while increasing the importance of production traits (1%). Genetic changes of breeding goal traits by their genetic standard deviations reduce emissions of greenhouse gases, and excretions of nitrogen and phosphorus per finished pig by up to 6% while increasing farm profit. The estimated EVs could be used to improve selection criteria and thereby contribute to the sustainability of pig production systems.


Assuntos
Criação de Animais Domésticos/economia , Cruzamento/economia , Meio Ambiente , Modelos Econômicos , Locos de Características Quantitativas , Suínos/genética , Animais , Brasil , Feminino , Masculino , Gestão de Riscos , Suínos/crescimento & desenvolvimento
3.
J Anim Sci ; 96(3): 817-829, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29378008

RESUMO

Selection for feed efficiency (FE) is a strategy to reduce the production costs per unit of animal product, which is one of the major objectives of current animal breeding programs. In pig breeding, selection for FE and other traits traditionally takes place based on purebred pig (PB) performance at the nucleus level, while pork production typically makes use of crossbred animals (CB). The success of this selection, therefore, depends on the genetic correlation between the performance of PB and CB (rpc) and on the genetic correlation (rg) between FE and the other traits that are currently under selection. Different traits are being used to account for FE, but the rpc has been reported only for feed conversion rate. Therefore, this study aimed 1) to estimate the rpc for growth performance, carcass, and FE traits; 2) to estimate rg between traits within PB and CB populations; and 3) to compare three different traits representing FE: feed conversion rate, residual energy intake (REI), and residual feed intake (RFI). Phenotypes of 194,445 PB animals from 23 nucleus farms, and 46,328 CB animals from three farms where research is conducted under near commercial production conditions were available for this study. From these, 22,984 PB and 8,657 CB presented records for feed intake. The PB population consisted of five sire and four dam lines, and the CB population consisted of terminal cross-progeny generated by crossing sires from one of the five PB sire lines with commercially available two-way maternal sow crosses. Estimates of rpc ranged from 0.61 to 0.71 for growth performance traits, from 0.75 to 0.82 for carcass traits, and from 0.62 to 0.67 for FE traits. Estimates of rg between growth performance, carcass, and FE traits differed within PB and CB. REI and RFI showed substantial positive rg estimates in PB (0.84) and CB (0.90) populations. The magnitudes of rpc estimates indicate that genetic progress is being realized in CB at the production level from selection on PB performance at nucleus level. However, including CB phenotypes recorded on production farms, when predicting breeding values, has the potential to increase genetic progress for these traits in CB. Given the genetic correlations with growth performance traits and the genetic correlation between the performance of PB and CB, REI is an attractive FE parameter for a breeding program.


Assuntos
Ingestão de Alimentos/genética , Ingestão de Energia/genética , Metabolismo Energético/genética , Suínos/genética , Animais , Cruzamento , Feminino , Modelos Lineares , Masculino , Fenótipo , Suínos/crescimento & desenvolvimento
4.
J Anim Breed Genet ; 133(3): 187-96, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27174095

RESUMO

We studied the effect of including GWAS results on the accuracy of single- and multipopulation genomic predictions. Phenotypes (backfat thickness) and genotypes of animals from two sire lines (SL1, n = 1146 and SL3, n = 1264) were used in the analyses. First, GWAS were conducted for each line and for a combined data set (both lines together) to estimate the genetic variance explained by each SNP. These estimates were used to build matrices of weights (D), which was incorporated into a GBLUP method. Single population evaluated with traditional GBLUP had accuracies of 0.30 for SL1 and 0.31 for SL3. When weights were employed in GBLUP, the accuracies for both lines increased (0.32 for SL1 and 0.34 for SL3). When a multipopulation reference set was used in GBLUP, the accuracies were higher (0.36 for SL1 and 0.32 for SL3) than in single-population prediction. In addition, putting together the multipopulation reference set and the weights from the combined GWAS provided even higher accuracies (0.37 for SL1, and 0.34 for SL3). The use of multipopulation predictions and weights estimated from a combined GWAS increased the accuracy of genomic predictions.


Assuntos
Peso Corporal , Estudo de Associação Genômica Ampla , Sus scrofa/genética , Tecido Adiposo , Animais , Polimorfismo de Nucleotídeo Único , Sus scrofa/classificação , Sus scrofa/fisiologia
5.
J Anim Sci ; 92(9): 3825-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24492557

RESUMO

In the era of genome-wide selection (GWS), genotype-by-environment (G×E) interactions can be studied using genomic information, thus enabling the estimation of SNP marker effects and the prediction of genomic estimated breeding values (GEBV) for young candidates for selection in different environments. Although G×E studies in pigs are scarce, the use of artificial insemination has enabled the distribution of genetic material from sires across multiple environments. Given the relevance of reproductive traits, such as the total number born (TNB) and the variation in environmental conditions encountered by commercial dams, understanding G×E interactions can be essential for choosing the best sires for different environments. The present work proposes a two-step reaction norm approach for G×E analysis using genomic information. The first step provided estimates of environmental effects (herd-year-season, HYS), and the second step provided estimates of the intercept and slope for the TNB across different HYS levels, obtained from the first step, using a random regression model. In both steps, pedigree ( A: ) and genomic ( G: ) relationship matrices were considered. The genetic parameters (variance components, h(2) and genetic correlations) were very similar when estimated using the A: and G: relationship matrices. The reaction norm graphs showed considerable differences in environmental sensitivity between sires, indicating a reranking of sires in terms of genetic merit across the HYS levels. Based on the G: matrix analysis, SNP by environment interactions were observed. For some SNP, the effects increased at increasing HYS levels, while for others, the effects decreased at increasing HYS levels or showed no changes between HYS levels. Cross-validation analysis demonstrated better performance of the genomic approach with respect to traditional pedigrees for both the G×E and standard models. The genomic reaction norm model resulted in an accuracy of GEBV for "juvenile" boars varying from 0.14 to 0.44 across different HYS levels, while the accuracy of the standard genomic prediction model, without reaction norms, varied from 0.09 to 0.28. These results show that it is important and feasible to consider G×E interactions in evaluations of sires using genomic prediction models and that genomic information can increase the accuracy of selection across environments.


Assuntos
Cruzamento , Genômica , Suínos/genética , Animais , Meio Ambiente , Feminino , Genoma , Genótipo , Masculino , Modelos Genéticos , Linhagem , Fenótipo , Suínos/fisiologia
6.
Anim Genet ; 42(3): 280-92, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21198696

RESUMO

Meta-analysis of results from multiple studies could lead to more precise quantitative trait loci (QTL) position estimates compared to the individual experiments. As the raw data from many different studies are not readily available, the use of results from published articles may be helpful. In this study, we performed a meta-analysis of QTL on chromosome 4 in pig, using data from 25 separate experiments. First, a meta-analysis was performed for individual traits: average daily gain and backfat thickness. Second, a meta-analysis was performed for the QTL of three traits affecting loin yield: loin eye area, carcass length and loin meat weight. Third, 78 QTL were selected from 20 traits that could be assigned to one of three broad categories: carcass, fatness or growth traits. For each analysis, the number of identified meta-QTL was smaller than the number of initial QTL. The reduction in the number of QTL ranged from 71% to 86% compared to the total number before the meta-analysis. In addition, the meta-analysis reduced the QTL confidence intervals by as much as 85% compared to individual QTL estimates. The reduction in the confidence interval was greater when a large number of independent QTL was included in the meta-analysis. Meta-QTL related to growth and fatness were found in the same region as the FAT1 region. Results indicate that the meta-analysis is an efficient strategy to estimate the number and refine the positions of QTL when QTL estimates are available from multiple populations and experiments. This strategy can be used to better target further studies such as the selection of candidate genes related to trait variation.


Assuntos
Cromossomos de Mamíferos/genética , Locos de Características Quantitativas , Suínos/genética , Tecido Adiposo , Criação de Animais Domésticos , Animais , Peso Corporal/genética , Mapeamento Cromossômico , Genótipo , Carne , Repetições de Microssatélites , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA