Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(40)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34186516

RESUMO

The present study was aimed to develop nitrogen-doped nanostructured ZnO thin films. These films were produced in a sequential procedure involving the atomic layer deposition technique, and a hydrothermal process supported by microwave heating. Employing the atomic layer deposition technique, through self-limited reactions of diethylzinc (DEZn) and H2O, carried out at 3.29 × 10-4atm and 190 °C, a high-quality ZnO seed was grown on a Si (100) substrate, producing a textured film. In a second stage, columnar ZnO nanostructures were grown perpendicularly oriented to the silicon substrate on those films, using a solvothermal process in a microwave heating facility, employing Zn(NO3)2as zinc precursor, while hexamethylenetetramine (HMTA) was used to produce the bridging of Zn2+ions. The consequence of N-doping concentration on the physicochemical properties of ZnO thin films was studied. The manufactured films were structurally analyzed by scanning electron microscopy and x-ray diffraction. Also, x-ray photoelectron spectroscopy, Raman, and UV-vis spectroscopies were used to provide further insight on the effect of nitrogen doping. The N-doped films displayed textured wurtzite-like structures that changes their preferential growth from the (002) to the (100) crystallographic plane, apparently promoted by the increase of nitrogen precursor. It is also shown that nitrogen-doped films undergo a reduction in their bandgap, compared to ZnO. The methodology presented here provides a viable way to perform high-quality N-ZnO nanostructured thin films.

2.
Nanomaterials (Basel) ; 9(9)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491904

RESUMO

Chronic kidney disease (CKD) is a worldwide public health problem. In stages III and IV of CKD, uremic toxins must be removed from the patient by absorption, through a treatment commonly called hemodialysis. Aiming to improve the absorption of uremic toxins, we have studied its absorption in chemically modified graphene nanoplatelets (GNPs). This study involved the reaction between GNPs and diamines with reaction times of 30, 45 and 60 min using ultrasound waves of different amplitudes and frequencies. Functionalized GNPs were analyzed by Fourier Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy and energy dispersitive spectroscopy (SEM-EDS), and Thermogravimetric analysis (TGA). The analysis of the functional groups confirmed the presence of amide and hydroxyl groups on the surface of the GNPs by reactions of diamines with carboxylic acids and epoxides. Adsorption of uremic toxins was determined using equilibrium isotherms, where the maximum percentage of removal of uremic toxins was 97%. Dispersion of modified graphene nanoplatelets was evaluated in water, ethanol and hexane, as a result of this treatment was achieved a good and effective dispersion of diamines-modified graphene nanoplatelets in ethanol and hexane. Finally, the results of hemolysis assays of the modified graphene with amine demonstrated that it was not cytotoxic when using 500 mg/mL. The samples of modified graphene demonstrated low degree of hemolysis (<2%), so this material can be used for in vivo applications such as hemodialysis.

3.
Chemosphere ; 236: 124368, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31323553

RESUMO

In the present work, the photocatalytic efficiency of a novel system based on ZnO doped with nitrogen (ZT) and supported on graphene oxide (GO) is investigated. ZnO synthesis and their N doping were carried out in a microwave reactor using thiourea as nitrogen source, while the GO was prepared through a variation of the Hummers' method. Structural, morphological and photochemical characterization of the developed material was performed by X-ray diffraction (XRD), UV-Vis spectroscopy, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), analysis by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The compounds were used to photodegrade the methylene blue molecule, which confirms the efficiency of nitrogen doped supported system compared to pristine ZnO. The degradation percentage of MB under UV energy using nitrogen-doped ZnO/GO, in a time of 35 min, reached 98% degradation; while using visible light 93% of degradation was reached.


Assuntos
Grafite/química , Nitrogênio/química , Óxido de Zinco/química , Catálise , Fotólise
4.
Materials (Basel) ; 12(5)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823647

RESUMO

Ultrasound energy is a green and economically viable alternative to conventional techniques for surface modification of materials. The main benefits of this technique are the decrease of processing time and the amount of energy used. In this work, graphene nanoplatelets were treated with organic acids under ultrasonic radiation of 350 W at different times (30 and 60 min) aiming to modify their surface with functional acid groups and to improve the adsorption of uremic toxins. The modified graphene nanoplatelets were characterized by Fourier transform infrared spectroscopy (FT⁻IR), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The optimum time for modification with organic acids was 30 min. The modified nanoplatelets were tested as adsorbent material for uremic toxins using the equilibrium isotherms where the adsorption isotherm of urea was adjusted for the Langmuir model. From the solution, 75% of uremic toxins were removed and absorbed by the modified nanoplatelets.

5.
Acta Biomater ; 6(6): 2035-44, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20004749

RESUMO

Biodegradable segmented polyurethanes (BSPUs) were prepared with poly(caprolactone) as a soft segment, 4,4'-methylene bis (cyclohexyl isocyanate) and either butanediol (BSPU1) or dithioerythritol (BSPU2) as a chain extender. BSPU samples were characterized in terms of their physicochemical properties and their hemocompatibility. Polymers were then degraded in acidic (HCl 2N), alkaline (NaOH 5M) and oxidative (H(2)O(2) 30wt.%) media and characterized by their mass loss, Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Undegraded BSPU1 and BSPU2 exhibited different properties, such as the glass transition temperature T(g) of the soft segment (-25 vs. 4 degrees C), mechanical properties (600% vs. 900% strain to break) and blood coagulating properties (clotting time=11.46 vs. 8.13min). After acidic and alkaline degradation, the disappearance of the 1728cm(-1) band of polycaprolactone (PCL) on both types of BSPU was detected by FTIR. However, the oxidative environment did not affect the soft segment severely as the presence of PCL crystalline domains were observed both by DSC (melting temperature T(m)=52.8 degrees C) and XRD (2theta=21.3 degrees and 23.7 degrees ). By TGA three decomposition temperatures were recorded for both BSPU samples, but the higher decomposition temperature was enhanced after acidic and alkaline degradation. The formation of the porous structure on BSPU1 was observed by SEM, while a granular surface was observed on BSPU2 after alkaline degradation.


Assuntos
Materiais Biocompatíveis/química , Cianatos/química , Poliésteres/química , Poliuretanos/química , Líquidos Corporais , Reagentes de Ligações Cruzadas/química , Cristalização/métodos , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA