Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167023, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37717767

RESUMO

Animal fibers are an important raw material for the fashion industry but have recently been discussed due to the environmental impacts related to their production. In order to provide scientific information for decision-making in the Peruvian alpaca sector a cradle to grave carbon footprint of one (01) wear of a 100 % alpaca fiber sweater has been conducted. For the modeling of the fiber procurement stage primary data regarding livestock management and annual production parameters were obtained from interviews with 42 Peruvian alpaca herders from the main producing regions in South and Central Peru. Data for the processing stages (spinning and dyeing, knitting and weaving) were collected by means of interviews and questionnaires from three alpaca fashion companies in Arequipa and Lima. The distribution, use, and end-of-life stages were modeled with secondary data. The resulting carbon footprint of one wear of the alpaca fiber sweater is 0.449 kg CO2 equivalents (CO2e). Most emissions occur during the lifecycle stages of fiber production and distribution (70 % and 14 % of CO2e emissions, respectively). Methane emissions from enteric fermentation account for 87 % of the impact within the fiber procurement stage. The environmental impacts during the distribution stage were dominated by retailing and road transport in the destination countries and export by air and sea (53.1 % and 46.4 % of carbon emissions in this stage, respectively). Other life cycle stages were found to be less relevant emission sources. The study concluded that the main strategies for impact mitigation should focus on improving the efficiency of the fiber procurement systems. Furthermore, several knowledge gaps have been identified and should be addressed by future research regarding methane emissions associated with the main co-products of the livestock systems, ecosystem services in the Andes and especially Andean wetlands and potential mitigation strategies of greenhouse gases related to different pasture management options.

2.
Environ Sci Technol ; 46(18): 9872-80, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22894858

RESUMO

Crop and technology choices in agriculture, which largely define the impact of agricultural production on the environment, should be considered in agricultural development planning. A life cycle assessment of the dominant crops produced in a Peruvian coastal valley was realized, in order to establish regionalized life cycle inventories for Peruvian products and to provide the basis for a regional evaluation of the impacts of eutrophication, acidification, human toxicity, and biodiversity loss due to water use. Five scenarios for the year 2020 characterized by different crop combinations and irrigation systems were considered as development options. The results of the regional assessment showed that a business-as-usual scenario, extrapolating current trends of crop cultivation, would lead to an increase in nitrate leaching with eutrophying effects. On the other hand, scenarios of increased application of drip irrigation and of mandarin area expansion would lead to a decrease in nitrate leaching. In all scenarios the human toxicity potential would decrease slightly, while an increase in irrigation water use would benefit the biodiversity of a nearby groundwater-fed wetland. Comparisons with results from other studies confirmed the importance of regionalized life cycle inventories. The results can be used as decision support for local farmers and authorities.


Assuntos
Irrigação Agrícola/métodos , Agricultura/métodos , Meio Ambiente , Biodiversidade , Eutrofização , Humanos , Peru
3.
Environ Sci Technol ; 46(9): 4966-74, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22463711

RESUMO

Global water use is dominated by agriculture and has considerable influence on people's livelihood and ecosystems, especially in semiarid and arid regions. Methods to address the impacts of water withdrawal and consumption on terrestrial and aquatic ecosystems within life cycle assessment are still sparse and very generic. Regionalized characterization factors (CFs) for a groundwater-fed wetland at the arid coast of Peru are developed for groundwater and surface water withdrawal and consumption in order to address the spatial dependency of water use related impacts. Several agricultural scenarios for 2020 were developed in a workshop with local stakeholders and used for calculating total biodiversity impacts. In contrast to assumptions used in top-down approaches (e.g., Pfister et al. Environ. Sci Technol. 2009, 43, 4098 ), irrigation with surface water leads in this specific region to benefits for the groundwater-fed wetland, due to additional groundwater recharge from surplus irrigation water. However, irrigation with groundwater leads to ecological damage to the wetland. The CFs derived from the different scenarios are similar and can thus be used as general CFs for this region, helping local decision-makers to plan future agricultural development, including irrigation technologies, crop choices, and protection of the wetland.


Assuntos
Irrigação Agrícola , Biodiversidade , Modelos Teóricos , Áreas Alagadas , Animais , Peru , Ciclo Hidrológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA