Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 19(1): e3000796, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497373

RESUMO

Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.


Assuntos
Cicloexanonas/uso terapêutico , Reposicionamento de Medicamentos , Controle de Infecções/métodos , Nitrobenzoatos/uso terapêutico , Tripanossomíase Africana/prevenção & controle , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Animais , Abelhas/efeitos dos fármacos , Feminino , Humanos , Inseticidas/uso terapêutico , Masculino , Metaboloma/efeitos dos fármacos , Camundongos , Modelos Teóricos , Doenças Negligenciadas/prevenção & controle , Produção de Droga sem Interesse Comercial , Ratos , Ratos Wistar , Testes de Toxicidade , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/efeitos dos fármacos , Moscas Tsé-Tsé/metabolismo , Tirosina/metabolismo
2.
Mol Ecol ; 21(14): 3433-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22574833

RESUMO

Monarch butterflies are best known for their spectacular annual migration from eastern North America to Mexico. Monarchs also occur in the North American states west of the Rocky Mountains, from where they fly shorter distances to the California Coast. Whether eastern and western North American monarchs form one genetic population or are genetically differentiated remains hotly debated, and resolution of this debate is essential to understand monarch migration patterns and to protect this iconic insect species. We studied the genetic structure of North American migratory monarch populations, as well as nonmigratory populations in Hawaii and New Zealand. Our results show that eastern and western migratory monarchs form one admixed population and that monarchs from Hawaii and New Zealand have genetically diverged from North American butterflies. These findings suggest that eastern and western monarch butterflies maintain their divergent migrations despite genetic mixing. The finding that eastern and western monarchs form one genetic population also suggests that the conservation of overwintering sites in Mexico is crucial for the protection of monarchs in both eastern and western North America.


Assuntos
Migração Animal , Borboletas/genética , Variação Genética , Genética Populacional , Animais , Conservação dos Recursos Naturais , Havaí , México , Repetições de Microssatélites , Nova Zelândia , América do Norte , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA