Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 94(4): 417-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26564151

RESUMO

UNLABELLED: In spite of considerable evidence on the regulation of immunity by thyroid hormones, the impact of the thyroid status in tumor immunity is poorly understood. Here, we evaluated the antitumor immune responses evoked in mice with different thyroid status (euthyroid, hyperthyroid, and hypothyroid) that developed solid tumors or metastases after inoculation of syngeneic T lymphoma cells. Hyperthyroid mice showed increased tumor growth along with increased expression of cell cycle regulators compared to hypothyroid and control tumor-bearing mice. However, hypothyroid mice showed a higher frequency of metastases than the other groups. Hyperthyroid mice bearing tumors displayed a lower number of tumor-infiltrating T lymphocytes, lower percentage of functional IFN-γ-producing CD8(+) T cells, and higher percentage of CD19(+) B cells than euthyroid tumor-bearing mice. However, no differences were found in the distribution of lymphocyte subpopulations in tumor-draining lymph nodes (TDLNs) or spleens among different experimental groups. Interestingly, hypothyroid TDLN showed an increased percentage of regulatory T (Treg) cells, while hyperthyroid mice displayed increased number and activity of splenic NK cells, which frequency declined in spleens from hypothyroid mice. Moreover, a decreased number of splenic myeloid-derived suppressor cells (MDSCs) were found in tumor-bearing hyperthyroid mice as compared to hypothyroid or euthyroid mice. Additionally, hyperthyroid mice showed increased cytotoxic activity, which declined in hypothyroid mice. Thus, low levels of intratumoral cytotoxic activity would favor tumor local growth in hyperthyroid mice, while regional and systemic antitumor response may contribute to tumor dissemination in hypothyroid animals. Our results highlight the importance of monitoring the thyroid status in patients with T cell lymphomas. KEY MESSAGES: T cell lymphoma phenotype is paradoxically influenced by thyroid status. Hyperthyroidism favors tumor growth and hypothyroidism rises tumor dissemination. Thyroid status affects the distribution of immune cell types in the tumor milieu. Thyroid status also modifies the nature of local and systemic immune responses.


Assuntos
Imunomodulação , Linfoma de Células T/imunologia , Linfoma de Células T/metabolismo , Doenças da Glândula Tireoide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hipertireoidismo/metabolismo , Hipotireoidismo/metabolismo , Contagem de Linfócitos , Linfoma de Células T/complicações , Linfoma de Células T/patologia , Camundongos , Metástase Neoplásica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Doenças da Glândula Tireoide/complicações , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Carga Tumoral , Microambiente Tumoral/imunologia
2.
Apoptosis ; 18(11): 1376-1390, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23733107

RESUMO

Thyroid hormones are important regulators of cell physiology, inducing cell proliferation, differentiation or apoptosis, depending on the cell type. Thyroid hormones induce proliferation in short-term T lymphocyte cultures. In this study, we assessed the effect of long-term thyroxine (T4) treatment on the balance of proliferation and apoptosis and the intermediate participants in T lymphoma cells. Treatment with T4 affected this balance from the fifth day of culture, inhibiting proliferation in a time-dependent manner. This effect was associated with apoptosis induction, as characterized through nuclear morphological changes, DNA fragmentation, and Annexin V-FITC/Propidium Iodide co-staining. In addition, increased iNOS gene and protein levels, and enzyme activity were observed. The generation of reactive oxygen species, depolarization of the mitochondrial membrane, and a reduction in glutathione levels were also observed. The imbalance between oxidants and antioxidants species is typically associated with the nitration of proteins, including PKCζ, an isoenzyme essential for lymphoma cell division and survival. Consistently, evidence of PKCζ nitration via proteasome degradation was also observed in this study. Taken together, these results suggest that the long-term culture of T lymphoma cells with T4 induces apoptosis through the increased production of oxidative species resulting from both augmented iNOS activity and the loss of mitochondrial function. These species induce the nitration of proteins involved in cell viability, promoting proteasome degradation. Furthermore, we discuss the impact of these results on the modulation of T lymphoma growth and the thyroid status in vivo.


Assuntos
Apoptose/efeitos dos fármacos , Linfoma de Células T/metabolismo , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Proteína Quinase C/genética , Tiroxina/farmacologia , Animais , Anexina A5 , Linhagem Celular Tumoral , Proliferação de Células , Corantes , Fragmentação do DNA/efeitos dos fármacos , Regulação da Expressão Gênica , Glutationa/metabolismo , Linfoma de Células T/genética , Linfoma de Células T/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Propídio , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Quinase C/metabolismo , Proteólise/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA