Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 106(3): 585-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24996548

RESUMO

Ionic and organic forms of mercury (Hg) are powerful cytotoxic and neurotoxic agents in both humans and wild life. The aim of this study was to analyze the resistance profile and potential detoxification of inorganic and organic forms of Hg of bacteria isolated from marine sponges on the coast of Rio de Janeiro, Brazil. Out of the 1,236 colony forming units associated with eleven species of marine sponges, 100 morphologically different bacterial strains were analyzed in this study. Of these, 21 strains were resistant to Hg, 14 of which were classified as highly resistant because they grew despite exposure to 100 µM HgCl2. Fifteen resistant strains reduced Hg and presented merA in their genomes. The remaining six strains produced biosurfactants, suggesting that they may tolerate Hg by sequestration. Eleven strains grew in the presence of methylmercury. Our results suggest a potential for mercury detoxification by marine sponge-associated resistant bacteria, either through reduction or sequestration, as well as the possibility of bioremediation of toxic waste containing mercury.


Assuntos
Bactérias/metabolismo , Cloreto de Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Poríferos/microbiologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Biotransformação , Brasil , Farmacorresistência Bacteriana , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Cloreto de Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade
2.
Curr Microbiol ; 69(3): 374-80, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24807626

RESUMO

Sponges are sessile marine invertebrates that can live for many years in the same location, and therefore, they have the capability to accumulate anthropogenic pollutants such as metals over a long period. Almost all marine sponges harbor a large number of microorganisms within their tissues. The Bacillus cereus strain Pj1 was isolated from a marine sponge, Polymastia janeirensis, and was found to be resistant to 100 µM HgCl(2) and to 10 µM methylmercury (MeHg). Pj1 was also highly resistant to other metals, including CdCl(2) and Pb(NO(3))(2), alone or in combination. The mer operon was located on the bacterial chromosome, and the volatilization test indicated that the B. cereus Pj1 was able to reduce Hg(2+)-Hg(0). Cold vapor atomic absorption spectrometry demonstrated that Pj1 volatilized 80 % of the total MeHg that it was exposed to and produced elemental Hg when incubated with 1.5 µM MeHg. Pj1 also demonstrated sensitivity to all antibiotics tested. In addition, Pj1 demonstrated a potential for biosurfactant production, presenting an emulsification activity better than synthetic surfactants. The results of this study indicate that B. cereus Pj1 is a strain that can potentially be applied in the bioremediation of HgCl(2) and MeHg contamination in aquatic environments.


Assuntos
Bacillus cereus/isolamento & purificação , Bacillus cereus/metabolismo , Farmacorresistência Bacteriana , Poluentes Ambientais/metabolismo , Cloreto de Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Animais , Biodegradação Ambiental , Doenças Mamárias/microbiologia , Cloreto de Cádmio/toxicidade , Cromossomos Bacterianos , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Cloreto de Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Mamilos/anormalidades , Mamilos/microbiologia , Nitratos/toxicidade , Óperon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA