RESUMO
Titanium and its alloys, especially Ti-6Al-4V, are widely studied in implantology for their favorable characteristics. However, challenges remain, such as the high modulus of elasticity and concerns about cytotoxicity. To resolve these issues, research focuses on ß-type titanium alloys that incorporate elements such as Mo, Nb, Sn, and Ta to improve corrosion resistance and obtain a lower modulus of elasticity compatible with bone. This review comprehensively examines current ß titanium alloys, evaluating their mechanical properties, in particular the modulus of elasticity, and corrosion resistance. To this end, a systematic literature search was carried out, where 81 articles were found to evaluate these outcomes. In addition, this review also covers the formation of the alloy, processing methods such as arc melting, and its physical, mechanical, electrochemical, tribological, and biological characteristics. Because ß-Ti alloys have a modulus of elasticity closer to that of human bone compared to other metal alloys, they help reduce stress shielding. This is important because the alloy allows for a more even distribution of forces by having a modulus of elasticity more similar to that of bone. In addition, these alloys show good corrosion resistance due to the formation of a noble titanium oxide layer, facilitated by the incorporation of ß stabilizers. These alloys also show significant improvements in mechanical strength and hardness. Finally, they also have lower cytotoxicity and bacterial adhesion, depending on the ß stabilizer used. However, there are persistent challenges that require detailed research in critical areas, such as optimizing the composition of the alloy to achieve optimal properties in different clinical applications. In addition, it is crucial to study the long-term effects of implants on the human body and to advance the development of cutting-edge manufacturing techniques to guarantee the quality and biocompatibility of implants.
Assuntos
Ligas , Implantes Dentários , Titânio , Titânio/química , Humanos , Ligas/química , Ligas/farmacologia , Corrosão , Teste de MateriaisRESUMO
Titanium (Ti) is widely utilized as an implant material; nonetheless, its integration with bone tissue faces limitations due to a patient's comorbidities. To address this challenge, we employed a strategic approach involving the growth of thin films by spin-coating and surface functionalization with etidronate (ETI), alendronate (ALE), and risedronate (RIS). Our methodology involved coating of Ti cp IV disks with thin films of TiO2, hydroxyapatite (HA), and their combinations (1:1 and 1:2 v/v), followed by surface functionalization with ETI, ALE, and RIS. Bisphosphonate-doped films were evaluated in terms of surface morphology and physical-chemical properties by techniques such as electron microscopy, confocal microscopy, and x-ray photoelectron spectroscopy. The antibacterial potential of bisphosphonates alone or functionalized onto the Ti surface was tested against Staphylococcus aureus biofilms. Primary human bone mesenchymal stem cells were used to determine in vitro cell metabolism and mineralization. Although RIS alone did not demonstrate any antibacterial effect as verified by minimum inhibitory concentration assay, when Ti surfaces were functionalized with RIS, partial inhibition of Staphylococcus aureus growth was noted, probably because of the physical-chemical surface properties. Furthermore, samples comprising TiO2/HA (1:1 and 1:2 v/v) showcased an enhancement in the metabolism of nondifferentiated cells and can potentially enhance the differentiation of osteoblastic precursors. All samples demonstrated cell viability higher than 80%. Addition of hydroxyapatite and presence of bisphosphonates increase the metabolic activity and the mineralization of human bone mesenchymal cells. While these findings hold promise, it is necessary to conduct further studies to evaluate the system's performance in vivo and ensure its long-term safety. This research marks a significant stride toward optimizing the efficacy of titanium implants through tailored surface modifications.
Assuntos
Antibacterianos , Difosfonatos , Células-Tronco Mesenquimais , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Difosfonatos/química , Difosfonatos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Células Cultivadas , Durapatita/química , Durapatita/farmacologiaRESUMO
STATEMENT OF PROBLEM: The difference in chemical composition between denture base resin and denture teeth requires the development of bonding protocols that increase the union between the materials. PURPOSE: The purpose of this in vitro study was to evaluate the impact of different bonding protocols on the bond between heat-polymerized and 3-dimensionally (3D) printed acrylic resin denture bases and acrylic resin prefabricated and 3D printed artificial teeth. MATERIAL AND METHODS: Four types of artificial teeth were evaluated: prefabricated acrylic resin (VITA MFT) and 3D printed (Cosmos TEMP, PRIZMA 3D Bio Denture, and PrintaX AA Temp) bonded to 20×24-mm cylinders of heat-polymerized (VipiWave) and 3D printed (Cosmos Denture, PRIZMA 3D Bio Denture, and PrintaX BB Base) denture bases. Three bonding protocols were tested (n=20): mechanical retention with perforation + monomer (PT1), mechanical retention with perforation + airborne-particle abrasion with 50-µm aluminum oxide + monomer (PT2), and mechanical retention with perforation + Palabond (PT3). Half of the specimens in each group received 10 000 thermocycles and were then subjected to the bonding test at a crosshead speed of 1 mm/minute. The failure type was analyzed and scanning electron micrographs made. Additionally, surface roughness (Ra) and wettability (degree) were analyzed (n=15). ANOVA was used to evaluate the effect of the bonding protocol, and the Student t test was applied to compare the experimental groups with the control (α=.05). For type of failure, a descriptive analysis was carried out using absolute and relative frequency. The Kruskal-Wallis test was used to evaluate the surface changes (α=.05). RESULTS: Among the protocols, PT3 with in Yller and PT2 with Prizma had the highest bond strengths of the heat-polymerized denture base and 3D printed teeth (P<.05). When comparing the experimental groups with the control, PT3 and PT2 had greater union with the 3D printed denture base + 3D printed teeth (in Yller), with no difference from the heat-polymerized denture base + prefabricated teeth in acrylic resin. The treatment of the 3D printed tooth surfaces affected the surface roughness of Prizma (P<.001) and wettability (P<.001). CONCLUSIONS: To increase the bond between Yller 3D printed denture base + 3D printed teeth, a bonding protocol including mechanical retention with perforation + Palabond or mechanical retention with perforation + airborne-particle abrasion with aluminum oxide + monomer is indicated. For the other materials tested, further bonding protocols need to be investigated.
Assuntos
Resinas Acrílicas , Colagem Dentária , Bases de Dentadura , Impressão Tridimensional , Dente Artificial , Resinas Acrílicas/química , Colagem Dentária/métodos , Técnicas In Vitro , Teste de Materiais , Propriedades de Superfície , Humanos , Materiais Dentários/química , Planejamento de DentaduraRESUMO
AIM: The aim of the study was to evaluate several mechanical and chemical decontamination methods associated with a newly introduced biofilm matrix disruption strategy for biofilm cleaning and preservation of implant surface features. MATERIALS AND METHODS: Titanium (Ti) discs were obtained by additive manufacturing. Polymicrobial biofilm-covered Ti disc surfaces were decontaminated with mechanical [Ti curette, Teflon curette, Ti brush, water-air jet device, and Er:YAG laser] or chemical [iodopovidone (PVPI) 0.2% to disrupt the extracellular matrix, along with amoxicillin; minocycline; tetracycline; H2 O2 3%; chlorhexidine 0.2%; NaOCl 0.95%; hydrocarbon-oxo-borate-based antiseptic] protocols. The optimal in vitro mechanical/chemical protocol was then tested in combination using an in vivo biofilm model with intra-oral devices. RESULTS: Er:YAG laser treatment displayed optimum surface cleaning by biofilm removal with minimal deleterious damage to the surface, smaller Ti release, good corrosion stability, and improved fibroblast readhesion. NaOCl 0.95% was the most promising agent to reduce in vitro and in vivo biofilms and was even more effective when associated with PVPI 0.2% as a pre-treatment to disrupt the biofilm matrix. The combination of Er:YAG laser followed by PVPI 0.2% plus NaOCl 0.95% promoted efficient decontamination of rough Ti surfaces by disrupting the biofilm matrix and killing remnants of in vivo biofilms formed in the mouth (the only protocol to lead to ~99% biofilm eradication). CONCLUSION: Er:YAG laser + PVPI 0.2% + NaOCl 0.95% can be a reliable decontamination protocol for Ti surfaces, eliminating microbial biofilms without damaging the implant surface.
Assuntos
Implantes Dentários , Lasers de Estado Sólido , Titânio , Descontaminação/métodos , Propriedades de Superfície , BiofilmesRESUMO
Abutment components (i.e., fixtures associated with oral implants) are essentially made of titanium (Ti), which is continuously exposed to the hash oral environment, resulting in scratching. Thus, such components need to be protected, and surface treatments are viable methods for overcoming long-term damage. Diamond-like carbon (DLC), an excellent protective material, is an alternative surface-treatment material for Ti abutments. Here, we demonstrate that a silicon interlayer for DLC film growth and the pulsed-direct current plasma-enhanced chemical vapor deposition (DC-PECVD) method enables the deposition of an enhanced protective DLC film. As a result, the DLC film demonstrated a smooth topography with a compact surface. Furthermore, the DLC film enhanced the mechanical (load-displacement, hardness, and elastic modulus) and tribological properties of Ti as well as increased its corrosion resistance (16-fold), which surpassed that of a bare Ti substrate. The biofilm formed (Streptococcus sanguinis) after 24 h exhibited an equal bacterial load (â¼7 Log colony-forming units) for both the groups (Ti and DLC). In addition, the DLC film exhibited good cytocompatibility, owing to its noncytotoxicity toward human gingival fibroblast cells. Therefore, DLC deposition via DC-PECVD can be considered to be a promising protective and cytocompatible alternative for developing implant abutments with enhanced mechanical, tribological, and electrochemical properties.
Assuntos
Biofilmes , Carbono , Humanos , Carbono/química , Próteses e Implantes , Titânio/química , GasesRESUMO
STATEMENT OF PROBLEM: The union of the metal removable partial denture framework to the heat polymerized acrylic resin is related to prosthesis longevity. However, methods to enhance this bond are not clear to clinicians and dental laboratory technicians. PURPOSE: The purpose of this systematic review was to identify which metal surface treatments best increase the bond strength between heat polymerized acrylic resin and removable partial denture alloys. MATERIAL AND METHODS: This review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and registered in the International Prospective Registry of Systematic Reviews (PROSPERO) database (CRD42022384926). Electronic searches were carried out independently, by 3 examiners in Medline/PubMed, Scopus, and Web of Science databases, and in the nonpeer-reviewed literature via ProQuest. RESULTS: The electronic searches resulted in 4143 articles, with 4055 after removing duplicates. After reading the titles and abstracts, 37 articles were selected for reading in full-text version, from which 6 articles were included. All studies evaluated materials for conventional acrylic resin denture base (heat polymerized), processed by water bath, bonded to metal. For the metal framework alloys, cobalt chromium (Co-Cr) alloys were used in 2 studies, titanium (Ti) in 2 studies, and Co-Cr and Ti in the other 2 studies. Different metal surface treatments were used as airborne-particle abrasion with aluminum oxide (particle sizes of 50 µm, 110 µm, and 250 µm) followed by the primer application and the isolated use of the primer, compared to the absence of isolated intervention or airborne-particle abrasion of the metal surface. Among the different primers used, those based on 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) showed the highest acrylic resin-to-metal bond strength values. CONCLUSIONS: Airborne-particle abrading the metal with Al2O3 followed by applying a 10-MDP-based primer, increased the bond strength between metal framework alloys and heat polymerized acrylic resin denture base material.
RESUMO
STATEMENT OF PROBLEM: An effective bond between a denture lining material and the denture base resin is necessary for proper function. Regarding the new technologies for manufacturing denture bases, a systematic search of the literature on this topic is lacking. PURPOSE: The purpose of this systematic review and meta-analysis was to evaluate the bond strength between denture lining material and computer-aided design and computer-aided manufacturing (CAD-CAM) denture base resin (milled and 3-dimensionally printed) versus conventional denture base resin. MATERIAL AND METHODS: Electronic databases (PubMed/MEDLINE, Scopus, and Web of Science) were independently searched by 4 researchers for relevant studies published up to April 2023. The population, intervention, comparison, and outcome (PICO) question was: "Comparing conventional and CAD-CAM (milled and 3-dimensionally printed) denture base materials, which promote greater bond strength when associated with denture lining material?" A meta-analysis was performed based on mean ±standard deviation bond strength values between denture base resins and denture lining material with 95% confidence intervals. RESULTS: Five in vitro studies were included. For bond strength, no difference was noted between conventional and milled denture base resin (confidence interval: -0.99 [-2.17 to 0.20]; heterogeneity: t2=0.57; Chi2:4.57; I2=78%; P=.10), and conventional resin had better values compared with those of 3-dimensionally (3D) printed (confidence interval: 3.03 [2.40-3.66]; heterogeneity: t2=0.00; Chi2:0.56; I2=0%; P<.001) when relined with soft materials. The milled denture base resin was better than the conventional (confidence interval: -0.85 [-1.33 to -0.38]; heterogeneity: Chi2:28.87; I2=93%; P<.001), with no difference between 3D printed and conventional (confidence interval: 0.18 [-4.23 to 4.59]; heterogeneity: t2=16.51; Chi2:130.99; I2=98%; P=.94) for hard liners. CONCLUSIONS: The bond strength between resins for milled CAD-CAM denture bases and denture lining material was similar to that of conventional denture base resin, regardless of the consistency of the denture lining material. The bond strength to 3D printed CAD-CAM resin was lower than that of the milled version.
RESUMO
STATEMENT OF PROBLEM: Although polyetheretherketone (PEEK) implant healing abutments have become popular because of their esthetic, mechanical, and chemical properties, studies analyzing oral polymicrobial adhesion to PEEK abutments are lacking. PURPOSE: The purpose of this in vitro and in vivo study was to evaluate oral microbial adhesion and colonization on titanium (Ti) and PEEK healing abutments. MATERIAL AND METHODS: Ti (N=35) and PEEK substrates (N=35) were evaluated in vitro in terms of the initial adhesion (1 hour) or biofilm accumulation (48 hours) of Candida albicans and a polymicrobial inoculum using stimulated human saliva to mimic a diverse oral microbiome. Surface decontamination ability was evaluated after 24 hours of in vitro biofilm formation after exposure to an erbium-doped yttrium aluminum garnet (Er:YAG) laser. Conventional and flowable composite resin veneering on PEEK was also tested for microbial adhesion. In addition, an in vivo model with 3 healthy volunteers was conducted by using a palatal appliance containing the tested materials (3 or 4 specimens of each material per appliance) for 2 days to evaluate the effect of substrate on the microbial profile. Biofilms were evaluated by live cell counts and scanning electron microscopy images, and the microbial profile by Checkerboard deoxyribonucleic acid (DNA)-DNA hybridization. The t test and Mann-Whitney test were used to compare the groups (α=.05). RESULTS: PEEK and Ti materials showed similar fungal adhesion (P>.05). Although the PEEK surface limited the initial in vitro polymicrobial adhesion (approximately 2 times less) compared with Ti (P=.040), after 48 hours of biofilm accumulation, the microbial load was statistically similar (P=.209). Er:YAG laser decontamination was more effective on PEEK than on Ti surfaces, reducing approximately 11 times more microbial accumulation (P=.019). Both composite resins tested showed similar microbial adhesion (1 hour). In vivo, the PEEK material showed reduced levels of 6 bacterial species (P<.05), including the putative pathogen Treponema denticola. CONCLUSIONS: Although PEEK and Ti had similar bacterial and fungus biofilm attachment and accumulation, PEEK promoted a host-compatible microbial profile with a significantly reduced T. denticola load.
RESUMO
Along with poor implant-bone integration, peri-implant diseases are the major causes of implant failure. Although such diseases are primarily triggered by biofilm accumulation, a complex inflammatory process in response to corrosive-related metallic ions/debris has also been recognized as a risk factor. In this regard, by boosting the titanium (Ti) surface with silane-based positive charges, cationic coatings have gained increasing attention due to their ability to kill pathogens and may be favorable for corrosion resistance. Nevertheless, the development of a cationic coating that combines such properties in addition to having a favorable topography for implant osseointegration is lacking. Because introducing hydroxyl (-OH) groups to Ti is essential to increase chemical bonds with silane, Ti pretreatment is of utmost importance to achieve such polarization. In this study, plasma electrolytic oxidation (PEO) was investigated as a new route to pretreat Ti with OH groups while providing favorable properties for implant application compared with traditional hydrothermal treatment (HT). To produce bactericidal and corrosion-resistant cationic coatings, after pretreatment with PEO or HT (Step 1), surface silanization was subsequently performed via immersion-based functionalization with 3-aminopropyltriethoxysilane (APTES) (Step 2). In the end, five groups were assessed: untreated Ti (Ti), HT, PEO, HT+APTES, and PEO+APTES. PEO created a porous surface with increased roughness and better mechanical and tribological properties compared with HT and Ti. The introduction of -OH groups by HT and PEO was confirmed by Fourier transform infrared spectroscopy and the increase in wettability producing superhydrophilic surfaces. After silanization, the surfaces were polarized to hydrophobic ones, and an increase in the amine functional group was observed by X-ray photoelectron spectroscopy, demonstrating a considerable amount of positive ions. Such protonation may explain the enhanced corrosion resistance and dead bacteria (Streptococcus aureus and Escherichia coli) found for PEO+APTES. All groups presented noncytotoxic properties with similar blood plasma protein adsorption capacity vs the Ti control. Our findings provide new insights into developing next-generation cationic coatings by suggesting that a tailorable porous and oxide coating produced by PEO has promise in designing enhanced cationic surfaces targeting biomedical and dental implant applications.
Assuntos
Silanos , Titânio , Propriedades de Superfície , Titânio/farmacologia , Titânio/química , CátionsRESUMO
We assessed the level of evidence for the presence of new periodontal pathogens by (i) comparing the occurrence of non-classical periodontal taxa between healthy vs. periodontitis patients (Association study); (ii) assessing the modifications in the prevalence and levels of these species after treatments (Elimination study). In the Association study, we compared the prevalence and levels of 39 novel bacterial species between periodontally healthy and periodontitis patients. In the Elimination study, we analyzed samples from periodontitis patients assigned to receive scaling and root planing alone or with metronidazole+ amoxicillin TID/ 14 days. Levels of 79 bacterial species (39 novel and 40 classic) were assessed at baseline, 3 and 12 months post-therapy. All samples were analyzed using Checkerboard DNA-DNA hybridization. Out of the 39 novel species evaluated, eight were categorized as having strong and four as having moderate association with periodontitis. Our findings suggest strong evidence supporting Lancefieldella rimae, Cronobacter sakazakii, Pluralibacter gergoviae, Enterococcus faecalis, Eubacterium limosum, Filifactor alocis, Haemophilus influenzae, and Staphylococcus warneri, and moderate evidence supporting Escherichia coli, Fusobacterium necrophorum, Spiroplasma ixodetis, and Staphylococcus aureus as periodontal pathogens. These findings contribute to a better understanding of the etiology of periodontitis and may guide future diagnostic and interventional studies.
RESUMO
INTRODUCTION: Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations. AREAS COVERED: Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility. EXPERT OPINION: Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.
Assuntos
Anti-Infecciosos , Implantes Dentários , Peri-Implantite , Humanos , Materiais Biocompatíveis/farmacologia , Implantes Dentários/efeitos adversos , Anti-Infecciosos/farmacologia , Peri-Implantite/etiologia , Peri-Implantite/prevenção & controle , Titânio/farmacologia , Propriedades de Superfície , BiofilmesRESUMO
Barrier membranes are critical in creating tissuecompartmentalization for guided tissue (GTR) and bone regeneration (GBR) therapies. More recently, resorbable membranes have been widely used for tissue and bone regeneration due to their improved properties and the dispensable re-entry surgery for membrane removal. However, in cases with membrane exposure, this may lead to microbial contamination that will compromise the integrity of the membrane, surrounding tissue, and bone regeneration, resulting in treatment failure. Although the microbial infection can negatively influence the clinical outcomes of regenerative therapy, such as GBR and GTR, there is a lack of clinical investigations in this field, especially concerning the microbial colonization of different types of membranes. Importantly, a deeper understanding of the mechanisms of biofilm growth and composition and pathogenesis on exposed membranes is still missing, explaining the mechanisms by which bone regeneration is reduced during membrane exposure. This scoping review comprehensively screened and discussed the current in vivo evidence and possible new perspectives on the microbial contamination of resorbable membranes. Results from eligible in vivo studies suggested that different bacterial species colonized exposed membranes according to their composition (collagen, expanded polytetrafluoroethylene (non-resorbable), and polylactic acid), but in all cases, it negatively affected the attachment level and amount of bone gain. However, limited models and techniques have evaluated the newly developed materials, and evidence is scarce. Finally, new approaches to enhance the antimicrobial effect should consider changing the membrane surface or incorporating long-term released antimicrobials in an effort to achieve better clinical success.
Assuntos
Regeneração Tecidual Guiada Periodontal , Membranas Artificiais , Regeneração Tecidual Guiada Periodontal/métodos , Implantes Absorvíveis , Colágeno , Regeneração Óssea , Politetrafluoretileno/farmacologiaRESUMO
Polypyrrole (PPy) is one of the most studied conductive polymers due to its electrical conductivity and biological properties, which drive the possibility of numerous applications in the biomedical area. The physical-chemical features of PPy allow the manufacture of biocompatible devices, enhancing cell adhesion and proliferation. Furthermore, owing to the electrostatic interactions between the negatively charged bacterial cell wall and the positive charges in the polymer structure, PPy films can perform an effective antimicrobial activity. PPy is also frequently associated with biocompatible agents and antimicrobial compounds to improve the biological response. Thus, this comprehensive review appraised the available evidence regarding the PPy-based films deposited on metallic implanted devices for biomedical applications. We focus on understanding key concepts that could influence PPy attributes regarding antimicrobial effect and cell behavior under in vitro and in vivo settings. Furthermore, we unravel the several agents incorporated into the PPy film and strategies to improve its functionality. Our findings suggest that incorporating other elements into the PPy films, such as antimicrobial agents, biomolecules, and other biocompatible polymers, may improve the biological responses. Overall, the basic properties of PPy, when combined with other composites, electrostimulation techniques, or surface treatment methods, offer great potential in biocompatibility and/or antimicrobial activities. However, challenges in synthesis standardization and potential limitations such as low adhesion and mechanical strength of the film must be overcome to improve and broaden the application of PPy film in biomedical devices.
Assuntos
Polímeros , Pirróis , Polímeros/farmacologia , Polímeros/química , Pirróis/farmacologia , Pirróis/química , Adesão Celular , Condutividade ElétricaRESUMO
The use of saliva as a protein source prior to microbiological and biological assays requires previous processing. However, the effect of these processing methods on the proteomic profile of saliva has not been tested. Stimulated human saliva was collected from eight healthy volunteers. Non-processed saliva was compared with 0.22 µm filtered, 0.45 µm filtered, and pasteurized saliva, by liquid chromatography-mass spectrometry. Data are available via ProteomeXchange with identifier PXD039248. The effect of processed saliva on microbial adhesion was tested using bacterial and fungus species and in biological cell behavior using HaCaT immortalized human keratinocytes. Two hundred and seventy-eight proteins were identified in non-processed saliva, of which 54 proteins (≈19%) were exclusive. Saliva processing reduced identified proteins to 222 (≈80%) for the 0.22 µm group, 219 (≈79%) for the 0.45 µm group, and 201 (≈72%) for the pasteurized saliva, compared to non-processed saliva. The proteomic profile showed similar molecular functions and biological processes. The different saliva processing methods did not alter microbial adhesion (ANOVA, p > 0.05). Interestingly, pasteurized saliva reduced keratinocyte cell viability. Saliva processing methods tested reduced the proteomic profile diversity of saliva but maintained similar molecular functions and biological processes, not interfering with microbial adhesion and cell viability, except for pasteurization, which reduced cell viability.
Assuntos
Proteômica , Saliva , Humanos , Saliva/química , Proteômica/métodos , Proteínas/análise , Espectrometria de Massas/métodos , Cromatografia Líquida/métodosRESUMO
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Assuntos
Anti-Infecciosos , Materiais Revestidos Biocompatíveis , Próteses e Implantes , Titânio , Animais , Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Oxirredução , Propriedades de Superfície , Titânio/farmacologiaRESUMO
STATEMENT OF PROBLEM: The complete denture occlusal scheme may influence clinical performance and patient satisfaction. However, a consensus on which occlusal scheme should be used for complete denture users is lacking. As a result, many dentists choose the scheme based on their preferences and clinical experience. PURPOSE: The purpose of this review was to assess the methodological quality and summarize the scientific evidence from secondary studies about the influence of occlusal schemes on the clinical performance of and patient satisfaction with complete dentures. MATERIAL AND METHODS: Ten sources were surveyed according to the patient, intervention, comparison, outcome (PICO) strategy. Systematic reviews that evaluated the clinical performance and patient satisfaction (O) of rehabilitated edentulous patients with conventional complete dentures (P) under different occlusal schemes (I/C) were included. Methodological quality was assessed by using A MeaSurement Tool to Assess systematic Reviews (AMSTAR) 2 tool by 2 authors independently. The effect of each occlusal scheme in comparison with others was summarized and classified as positive, neutral, negative, or inconclusive based on the conclusions of the systematic review concerning clinical performance and patient satisfaction outcomes. RESULTS: The search led to the inclusion of 10 systematic reviews. Seven were classified as of critically low, 2 as low, and 1 as moderate methodological quality. The following occlusal designs were included and analyzed: bilateral balanced occlusion, lingualized occlusion, canine guidance, group function, and monoplane occlusion. Bilateral balanced occlusion and canine guidance obtained satisfactory results for both outcomes. Lingualized occlusion showed a trend toward better results than other occlusal schemes for normal and resorbed ridges. Group function presented mainly inconclusive results, and monoplane occlusion did not deliver satisfactory outcomes. CONCLUSIONS: The present overview concluded that occlusal schemes might interfere with the clinical performance of and patient satisfaction with complete dentures. Lingualized, bilateral balanced, and canine guidance are preferred compared with monoplane occlusion, but lingualized occlusion tends to show better results in some reviews. However, the results should be carefully considered because of the low quality of the systematic reviews included.
Assuntos
Planejamento de Dentadura , Satisfação do Paciente , Humanos , Revisões Sistemáticas como Assunto , Prótese Total , Oclusão Dentária , Oclusão Dentária Balanceada , MastigaçãoRESUMO
Biofilms are complex tri-dimensional structures that encase microbial cells in an extracellular matrix comprising self-produced polymeric substances. The matrix rich in extracellular polymeric substance (EPS) contributes to the unique features of biofilm lifestyle and structure, enhancing microbial accretion, biofilm virulence, and antimicrobial resistance. The role of the EPS matrix of biofilms growing on biotic surfaces, especially dental surfaces, is largely unravelled. To date, there is a lack of a broad overview of existing literature concerning the relationship between the EPS matrix and the dental implant environment and its role in implant-related infections. Here, we discuss recent advances in the critical role of the EPS matrix on biofilm growth and virulence on the dental implant surface and its effect on the etiopathogenesis and progression of implant-related infections. Similar to other biofilms associated with human diseases/conditions, EPS-enriched biofilms on implant surfaces promote microbial accumulation, microbiological shift, cross-kingdom interaction, antimicrobial resistance, biofilm virulence, and, consequently, peri-implant tissue damage. But intriguingly, the protagonism of EPS role on implant-related infections and the development of matrix-target therapeutic strategies has been neglected. Finally, we highlight the need for more in-depth analyses of polymicrobial interactions within EPS matrix and EPS-targeting technologies' rationale for disrupting the complex biofilm microenvironment with more outstanding translation to implant applications in the near future.
Assuntos
Anti-Infecciosos , Implantes Dentários , Humanos , Biofilmes , Matriz Extracelular , Matriz Extracelular de Substâncias PoliméricasRESUMO
STATEMENT OF PROBLEM: Industry needs scientific knowledge to develop new products and services, and their financial support to dental implant researchers translates into commercial products. Therefore, identifying the relevant factors for a successful industry partnership is important. PURPOSE: The purpose of this study was to provide a 20-year bibliometric overview of industry-sponsored studies in implant dentistry to identify possible factors involved in industry partnership motivations. MATERIAL AND METHODS: A hand search of 6 of the most established journals in the implant dentistry field was performed for articles published in 1999, 2004, 2009, 2014, and 2019. Information regarding the continent of origin of the corresponding author, interinstitute collaboration, type and topic of research, and the h-index of the corresponding author was recorded for each included article. Bivariate and multivariate logistic regression was used to determine statistical relationship between industry support and exploratory factors (α=.05). RESULTS: A 6% increase in the chance of industry investment was observed over the years (odds ratio [OD]=1.06; P<.001). Studies from North America (OD=4.87; P<.001) and Europe (OD=3.13; P<.001) were more likely to receive industry funding. Data also revealed a direct relationship between the increasing number of institutions involved in the study and the probability of industry funding (OD=1.21; P<.001). Animal studies (OD=2.26; P<.001) about surgical procedures and prosthodontic topics (OD=1.40; P=.044) stood out for having greater industry support. Researchers with an h-index between 31 and 40 were more likely to receive industry financial support (OD=2.46; P=.001). CONCLUSIONS: Industry support for dental implant research was closely aligned with the continent of origin, interinstitute collaboration, type and topic of research, and the h-index of the corresponding author.
RESUMO
Across years, potential strategies to fight peri-implantitis have been notoriously explored through the antimicrobial coating implant surfaces capable of interfering with the bacterial adhesion process. However, although experimental studies have significantly advanced, no product has been marketed so far. For science to reach the society, the commercialization of research outcomes is necessary to provide real advancement in the biomedical field. Therefore, the aim of this study was to investigate the challenges involved in the development of antimicrobial dental implant surfaces to fight peri-implantitis, through a systematic search. Research articles reporting antimicrobial dental implant surfaces were identified by searching PubMed, Scopus, Web of Science, The Cochrane Library, Embase, and System of Information on Grey Literature in Europe, between 2008 and 2020. A total of 1778 studies were included for quality assessment and the review. An impressive number of 1655 articles (93,1%) comprised in vitro studies, whereas 123 articles refer to in vivo investigations. From those 123, 102 refer to animal studies and only 21 articles were published on the clinical performance of antibacterial dental implant surfaces. The purpose of animal studies is to test how safe and effective new treatments are before they are tested in people. Therefore, the discrepancy between the number of published studies clearly reveals that preclinical investigations still come up against several challenges to overcome before moving forward to a clinical setting. Additionally, researchers need to recognize that the complex journey from lab to market requires more than a great idea and resources to develop a commercial invention; research teams must possess the skills necessary to commercialize an invention.
Assuntos
Anti-Infecciosos , Implantes Dentários , Peri-Implantite , Animais , Antibacterianos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Biofilmes , Humanos , Peri-Implantite/tratamento farmacológicoRESUMO
The stability of peri-implant soft tissues is essential for long-term success. Integrins play a vital role in biological processes through developing and maintaining cell interactions; however, few studies have evaluated the effects of modifications to abutment surfaces on cell adhesion across integrin expression. Therefore, this pilot study assessed the influence of different surface topographies of titanium healing abutments prepared by additive manufacturing (AM) on the gene expression levels of the integrin subunits α2, ß1, αv, and ß6 in the human peri-implant mucosa. Thirteen healthy adults were included. Depending on the number of required implants, the subjects were distributed in different groups as a function of healing abutment topography: group 1 (fully rough surface); group 2 (upper machined + lower rough); group 3 (rough upper surface + lower machined); group 4 (fully machined). A total of 40 samples (n = 10/group) of the peri-implant mucosa around the abutments were collected 30 days after implant placement, and subsequently, the gene expression levels were evaluated using real-time PCR. The levels of gene expression of ß1-subunit integrin were upregulated for individuals receiving fully rough surface abutments compared with the other surface topographies (p < 0.05). However, the healing abutment topography did not affect the gene expression levels of the α2, αv, and ß6 integrin subunits in the human peri-implant mucosa (p > 0.05). This preliminary study suggested that controlled modifications of the surface topography of titanium healing abutments produced by AM may influence the quality of the peri-implant mucosa in the early stages of the soft tissue healing process.