Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 1053, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013451

RESUMO

In the brain, the excitation-inhibition balance prevents abnormal synchronous behavior. However, known synaptic conductance intensity can be insufficient to account for the undesired synchronization. Due to this fact, we consider time delay in excitatory and inhibitory conductances and study its effect on the neuronal synchronization. In this work, we build a neuronal network composed of adaptive integrate-and-fire neurons coupled by means of delayed conductances. We observe that the time delay in the excitatory and inhibitory conductivities can alter both the state of the collective behavior (synchronous or desynchronous) and its type (spike or burst). For the weak coupling regime, we find that synchronization appears associated with neurons behaving with extremes highest and lowest mean firing frequency, in contrast to when desynchronization is present when neurons do not exhibit extreme values for the firing frequency. Synchronization can also be characterized by neurons presenting either the highest or the lowest levels in the mean synaptic current. For the strong coupling, synchronous burst activities can occur for delays in the inhibitory conductivity. For approximately equal-length delays in the excitatory and inhibitory conductances, desynchronous spikes activities are identified for both weak and strong coupling regimes. Therefore, our results show that not only the conductance intensity, but also short delays in the inhibitory conductance are relevant to avoid abnormal neuronal synchronization.

2.
Chaos ; 30(8): 083115, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32872816

RESUMO

Chimera states are spatiotemporal patterns in which coherent and incoherent dynamics coexist simultaneously. These patterns were observed in both locally and nonlocally coupled oscillators. We study the existence of chimera states in networks of coupled Rössler oscillators. The Rössler oscillator can exhibit periodic or chaotic behavior depending on the control parameters. In this work, we show that the existence of coherent, incoherent, and chimera states depends not only on the coupling strength, but also on the initial state of the network. The initial states can belong to complex basins of attraction that are not homogeneously distributed. Due to this fact, we characterize the basins by means of the uncertainty exponent and basin stability. In our simulations, we find basin boundaries with smooth, fractal, and riddled structures.

3.
Front Comput Neurosci ; 13: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024282

RESUMO

Excessively high, neural synchronization has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronization mechanisms can thus help control or even treat epilepsy. In this paper, we study neural synchronization in a random network where nodes are neurons with excitatory and inhibitory synapses, and neural activity for each node is provided by the adaptive exponential integrate-and-fire model. In this framework, we verify that the decrease in the influence of inhibition can generate synchronization originating from a pattern of desynchronized spikes. The transition from desynchronous spikes to synchronous bursts of activity, induced by varying the synaptic coupling, emerges in a hysteresis loop due to bistability where abnormal (excessively high synchronous) regimes exist. We verify that, for parameters in the bistability regime, a square current pulse can trigger excessively high (abnormal) synchronization, a process that can reproduce features of epileptic seizures. Then, we show that it is possible to suppress such abnormal synchronization by applying a small-amplitude external current on > 10% of the neurons in the network. Our results demonstrate that external electrical stimulation not only can trigger synchronous behavior, but more importantly, it can be used as a means to reduce abnormal synchronization and thus, control or treat effectively epileptic seizures.

4.
Sci Rep ; 8(1): 17340, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478345

RESUMO

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

5.
Chaos ; 28(8): 085717, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30180633

RESUMO

We study the standard nontwist map that describes the dynamic behaviour of magnetic field lines near a local minimum or maximum of frequency. The standard nontwist map has a shearless invariant curve that acts like a barrier in phase space. Critical parameters for the breakup of the shearless curve have been determined by procedures based on the indicator points and bifurcations of periodical orbits, a methodology that demands high computational cost. To determine the breakup critical parameters, we propose a new simpler and general procedure based on the determinism analysis performed on the recurrence plot of orbits near the critical transition. We also show that the coexistence of islands and chaotic sea in phase space can be analysed by using the recurrence plot. In particular, the measurement of determinism from the recurrence plot provides us with a simple procedure to distinguish periodic from chaotic structures in the parameter space. We identify an invariant shearless breakup scenario, and we also show that recurrence plots are useful tools to determine the presence of periodic orbit collisions and bifurcation curves.

6.
Chaos ; 28(3): 033611, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604645

RESUMO

Finding the correct encoding for a generic dynamical system's trajectory is a complicated task: the symbolic sequence needs to preserve the invariant properties from the system's trajectory. In theory, the solution to this problem is found when a Generating Markov Partition (GMP) is obtained, which is only defined once the unstable and stable manifolds are known with infinite precision and for all times. However, these manifolds usually form highly convoluted Euclidean sets, are a priori unknown, and, as it happens in any real-world experiment, measurements are made with finite resolution and over a finite time-span. The task gets even more complicated if the system is a network composed of interacting dynamical units, namely, a high-dimensional complex system. Here, we tackle this task and solve it by defining a method to approximately construct GMPs for any complex system's finite-resolution and finite-time trajectory. We critically test our method on networks of coupled maps, encoding their trajectories into symbolic sequences. We show that these sequences are optimal because they minimise the information loss and also any spurious information added. Consequently, our method allows us to approximately calculate the invariant probability measures of complex systems from the observed data. Thus, we can efficiently define complexity measures that are applicable to a wide range of complex phenomena, such as the characterisation of brain activity from electroencephalogram signals measured at different brain regions or the characterisation of climate variability from temperature anomalies measured at different Earth regions.

7.
Chaos ; 28(3): 033103, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604657

RESUMO

The dynamics of a parametric simple pendulum submitted to an arbitrary angle of excitation ϕ was investigated experimentally by simulations and analytically. Analytical calculations for the loci of saddle-node bifurcations corresponding to the creation of resonant orbits were performed by applying Melnikov's method. However, this powerful perturbative method cannot be used to predict the existence of odd resonances for a vertical excitation within first order corrections. Yet, we showed that period-3 resonances indeed exist in such a configuration. Two degenerate attractors of different phases, associated with the same loci of saddle-node bifurcations in parameter space, are reported. For tilted excitation, the degeneracy is broken due to an extra torque, which was confirmed by the calculation of two distinct loci of saddle-node bifurcations for each attractor. This behavior persists up to ϕ≈7π/180, and for inclinations larger than this, only one attractor is observed. Bifurcation diagrams were constructed experimentally for ϕ=π/8 to demonstrate the existence of self-excited resonances (periods smaller than three) and hidden oscillations (for periods greater than three).

8.
Sci Rep ; 7: 42351, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181582

RESUMO

Nonlinear dynamical systems may be exposed to tipping points, critical thresholds at which small changes in the external inputs or in the system's parameters abruptly shift the system to an alternative state with a contrasting dynamical behavior. While tipping in a fold bifurcation of an equilibrium is well understood, much less is known about tipping of oscillations (limit cycles) though this dynamics are the typical response of many natural systems to a periodic external forcing, like e.g. seasonal forcing in ecology and climate sciences. We provide a detailed analysis of tipping phenomena in periodically forced systems and show that, when limit cycles are considered, a transient structure, so-called channel, plays a fundamental role in the transition. Specifically, we demonstrate that trajectories crossing such channel conserve, for a characteristic time, the twisting behavior of the stable limit cycle destroyed in the fold bifurcation of cycles. As a consequence, this channel acts like a "ghost" of the limit cycle destroyed in the critical transition and instead of the expected abrupt transition we find a smooth one. This smoothness is also the reason that it is difficult to precisely determine the transition point employing the usual indicators of tipping points, like critical slowing down and flickering.

9.
Chaos ; 26(8): 083107, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27586603

RESUMO

We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.


Assuntos
Dinâmica não Linear , Eletrônica , Periodicidade , Potenciometria
10.
Artigo em Inglês | MEDLINE | ID: mdl-24580275

RESUMO

The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.


Assuntos
Necessidades e Demandas de Serviços de Saúde/organização & administração , Modelos Econômicos , Modelos Organizacionais , Modelos Teóricos , Centrais Elétricas , Simulação por Computador , Reino Unido
11.
Chaos ; 15(3): 33112, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16252986

RESUMO

We find numerically small scale basic structures of homoclinic bifurcation curves in the parameter space of the Chua circuit. The distribution of these basic structures in the parameter space and their geometrical properties constitute a complete homoclinic bifurcation scenario of this system. Furthermore, these structures and the scenario are theoretically demonstrated to be generic to a large class of dynamical systems that presents, as the Chua circuit, Shilnikov homoclinic orbits. We classify the complexity of primary and subsidiary homoclinic orbits by their order given by the number of their returning loops. Our results confirm previous predictions of structures of homoclinic bifurcation curves and extend this study to high order primary orbits. Furthermore, we identify accumulations of bifurcation curves of subsidiary homoclinic orbits into bifurcation curves of both primary and subsidiary orbits.


Assuntos
Relógios Biológicos/fisiologia , Modelos Biológicos , Dinâmica não Linear , Algoritmos , Simulação por Computador , Transferência de Energia
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(5 Pt 2): 056212, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12786255

RESUMO

We show experimental and numerical results of phase synchronization between the chaotic Chua circuit and a small sinusoidal perturbation. Experimental real-time phase synchronized states can be detected with oscilloscope visualization of the attractor, using specific sampling rates. Arnold tongues demonstrate robust phase synchronized states for perturbation frequencies close to the characteristic frequency of the unperturbed Chua.

13.
Chaos ; 13(1): 145-50, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12675421

RESUMO

We find the conditions for a chaotic system to transmit a general source of information efficiently. Transmission of information with very low probability of error is possible if the topological entropy of the transmitted wave signal is greater than or equal to the Shannon entropy of the source message minus the conditional entropy coming from the limitations of the channel (such as equivocation by the noise). This condition may not be always satisfied both due to dynamical constraints and due to the nonoptimal use of the dynamical partition. In both cases, we describe strategies to overcome these limitations.


Assuntos
Comunicação , Entropia , Modelos Estatísticos , Dinâmica não Linear
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(5 Pt 2): 055201, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12059628

RESUMO

This paper presents fundamentals of a theory to characterize chaos-based communication. We describe the amount of information a dynamical system is able to transmit, the dynamical channel capacity, which takes into account the information that a dynamical system generates.

15.
Chaos ; 8(1): 290-299, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12779732

RESUMO

In this work we present a method to rapidly direct a chaotic system, to an aimed state or target, through a sequence of control perturbations, with few different amplitudes chosen according to the allowed control-parameter changes. We applied this procedure to the one-dimensional Logistic map, to the two-dimensional Henon map, and to the Double Scroll circuit described by a three-dimensional system of differential equations. Furthermore, for the Logistic map, we show numerically that the resulting trajectory (from the starting point to the target) goes along a stable manifold of the target. Moreover, using the Henon map, we create and stabilize unstable periodic orbits, and also verify the procedure robustness in the presence of noise. We apply our method to the Double Scroll circuit, without using any low-dimensional mapping to represent its dynamics, an improvement with respect to previous targeting methods only applied for experimental systems that are mapping-modeled. (c) 1998 American Institute of Physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA