Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39280840

RESUMO

Background: Acid-sensing ion channel 1a (ASIC1a) plays a critical role in physiological and pathological processes. To further elucidate the biological functions of ASICs and their relationships with disease occurrence and development, it is advantageous to investigate and develop additional regulatory factors for ASICs. Methods: In this study, cation exchange chromatography was used to separate seven chromatographic components from Naja naja atra venom. Capillary electrophoresis was employed to detect that Ⅶ peak component containing a main protein Ⅶ-2, which could bind to ASIC1a. The analgesic effects of Ⅶ-2 protein were determined using hot plate methods, and ASIC1a expression in spinal cord tissue from rats with inflammatory pain was detected using western blot. Results: The purified Ⅶ-2 protein named Naja naja atra venom-Ⅶ-2 (NNAV-Ⅶ-2) was obtained by Sephadex G-50 gel filtration, which exhibited a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight of 6.7 kD. Remarkably, the NNAV-Ⅶ-2 protein demonstrated a significant analgesic effect and downregulated ASIC1a expression in the spinal cord tissue of rats with inflammatory pain. Conclusions: The analgesic mechanism of the NNAV-Ⅶ-2 protein may be associated with its binding to ASIC1a, consequently downregulating ASIC1a expression in neural tissues.

2.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;30: e20230099, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1575197

RESUMO

Abstract Background: Acid-sensing ion channel 1a (ASIC1a) plays a critical role in physiological and pathological processes. To further elucidate the biological functions of ASICs and their relationships with disease occurrence and development, it is advantageous to investigate and develop additional regulatory factors for ASICs. Methods: In this study, cation exchange chromatography was used to separate seven chromatographic components from Naja naja atra venom. Capillary electrophoresis was employed to detect that Ⅶ peak component containing a main protein Ⅶ-2, which could bind to ASIC1a. The analgesic effects of Ⅶ-2 protein were determined using hot plate methods, and ASIC1a expression in spinal cord tissue from rats with inflammatory pain was detected using western blot. Results: The purified Ⅶ-2 protein named Naja naja atra venom-Ⅶ-2 (NNAV-Ⅶ-2) was obtained by Sephadex G-50 gel filtration, which exhibited a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight of 6.7 kD. Remarkably, the NNAV-Ⅶ-2 protein demonstrated a significant analgesic effect and downregulated ASIC1a expression in the spinal cord tissue of rats with inflammatory pain. Conclusions: The analgesic mechanism of the NNAV-Ⅶ-2 protein may be associated with its binding to ASIC1a, consequently downregulating ASIC1a expression in neural tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA