Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 342(1): 10-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23431991

RESUMO

The study of the human microbiome or community of microorganisms and collection of genomes found in the human body is one of the fastest growing research areas because many diseases are reported to be associated with microbiome imbalance or dysbiosis. With the improvement in novel sequencing techniques, researchers are now generating millions of sequences of different sites from the human body and evaluating specific differences in microbial communities. The importance of microbiome constituency is so relevant that several consortia like the Human Microbiome project (HMP) and Metagenomics of the Human Intestinal Tract (MetaHIT) project are focusing mainly on the human microbiome. The aim of this review is to highlight points of research in this field, mainly focusing on particular factors that modulate the microbiome and important insights into its potential impact on our health and well-being.


Assuntos
Biota , Doenças Inflamatórias Intestinais/microbiologia , Metagenoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
2.
PLoS One ; 8(1): e53818, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342011

RESUMO

Corynebacterium pseudotuberculosis is a facultative intracellular pathogen and the causative agent of several infectious and contagious chronic diseases, including caseous lymphadenitis, ulcerative lymphangitis, mastitis, and edematous skin disease, in a broad spectrum of hosts. In addition, Corynebacterium pseudotuberculosis infections pose a rising worldwide economic problem in ruminants. The complete genome sequences of 15 C. pseudotuberculosis strains isolated from different hosts and countries were comparatively analyzed using a pan-genomic strategy. Phylogenomic, pan-genomic, core genomic, and singleton analyses revealed close relationships among pathogenic corynebacteria, the clonal-like behavior of C. pseudotuberculosis and slow increases in the sizes of pan-genomes. According to extrapolations based on the pan-genomes, core genomes and singletons, the C. pseudotuberculosis biovar ovis shows a more clonal-like behavior than the C. pseudotuberculosis biovar equi. Most of the variable genes of the biovar ovis strains were acquired in a block through horizontal gene transfer and are highly conserved, whereas the biovar equi strains contain great variability, both intra- and inter-biovar, in the 16 detected pathogenicity islands (PAIs). With respect to the gene content of the PAIs, the most interesting finding is the high similarity of the pilus genes in the biovar ovis strains compared with the great variability of these genes in the biovar equi strains. Concluding, the polymerization of complete pilus structures in biovar ovis could be responsible for a remarkable ability of these strains to spread throughout host tissues and penetrate cells to live intracellularly, in contrast with the biovar equi, which rarely attacks visceral organs. Intracellularly, the biovar ovis strains are expected to have less contact with other organisms than the biovar equi strains, thereby explaining the significant clonal-like behavior of the biovar ovis strains.


Assuntos
Corynebacterium/genética , Genoma Bacteriano/genética , Animais , Deleção de Genes , Genes Bacterianos/genética , Variação Genética , Ilhas Genômicas/genética , Família Multigênica/genética , Especificidade da Espécie , Fatores de Virulência/genética
3.
Gene ; 508(2): 145-56, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22890137

RESUMO

The genus Campylobacter contains pathogens causing a wide range of diseases, targeting both humans and animals. Among them, the Campylobacter fetus subspecies fetus and venerealis deserve special attention, as they are the etiological agents of human bacterial gastroenteritis and bovine genital campylobacteriosis, respectively. We compare the whole genomes of both subspecies to get insights into genomic architecture, phylogenetic relationships, genome conservation and core virulence factors. Pan-genomic approach was applied to identify the core- and pan-genome for both C. fetus subspecies and members of the genus. The C. fetus subspecies conserved (76%) proteome were then analyzed for their subcellular localization and protein functions in biological processes. Furthermore, with pathogenomic strategies, unique candidate regions in the genomes and several potential core-virulence factors were identified. The potential candidate factors identified for attenuation and/or subunit vaccine development against C. fetus subspecies contain: nucleoside diphosphate kinase (Ndk), type IV secretion systems (T4SS), outer membrane proteins (OMP), substrate binding proteins CjaA and CjaC, surface array proteins, sap gene, and cytolethal distending toxin (CDT). Significantly, many of those genes were found in genomic regions with signals of horizontal gene transfer and, therefore, predicted as putative pathogenicity islands. We found CRISPR loci and dam genes in an island specific for C. fetus subsp. fetus, and T4SS and sap genes in an island specific for C. fetus subsp. venerealis. The genomic variations and potential core and unique virulence factors characterized in this study would lead to better insight into the species virulence and to more efficient use of the candidates for antibiotic, drug and vaccine development.


Assuntos
Campylobacter fetus/classificação , Campylobacter fetus/genética , Genes Bacterianos , Genoma Bacteriano , Ilhas Genômicas/genética , Fatores de Virulência/genética , Virulência/genética , Animais , Infecções por Campylobacter/microbiologia , Campylobacter fetus/patogenicidade , Bovinos , DNA Bacteriano/genética , Humanos , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA