Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
1.
J Ethnopharmacol ; 336: 118751, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39214192

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huachansu Capsule (HCSc) is a simple enteric-coated capsule refined from the skin of the dried toad, a traditional medicinal herb. It has been used clinically for many years to treat a variety of malignant tumors with remarkable efficacy. To date, a number of main components of HCSc have been reported to be cardiotoxic, but the specific mechanism of cardiotoxicity is still unknown. AIM OF THE STUDY: The aim of this study was to elucidate the possible cardiotoxic symptoms caused by high-doses of HCSc and to further reveal the complex mechanisms by which it causes cardiotoxicity. MATERIALS AND METHODS: UPLC-Q-Exactive Orbitrap MS and network toxicology were used to identify and predict the potential toxic components, related signaling pathways. Then, we used acute and sub-acute toxicity experiments to reveal the apparent phenomenon of HCSc-induced cardiotoxicity. Finally, we combined transcriptomics and metabolomics to elucidate the potential mechanism of action, and verified the putative mechanism by molecular docking, RT-qPCR, and Western blot. RESULTS: We found 8 toad bufadienolides components may be induced cardiac toxicity HCSc main toxic components. Through toxicity experiments, we found that high dose of HCSc could increase a variety of blood routine indexes, five cardiac enzymes, heart failure indexes (BNP), troponin (cTnI and cTnT), heart rate and the degree of heart tissue damage, while low-dose of HCSc had no such changes. In addition, by molecular docking, found that 8 kinds of main toxic components and cAMP, AMPK, IL1ß, mTOR all can be a very good combination, especially in the cAMP. Meanwhile, RT-qPCR and Western blot results showed that HCSc could induce cardiotoxicity by regulating a variety of heart-related differential genes and activating the cAMP signaling pathway. CONCLUSIONS: In this study, network toxicology, transcriptomics and metabolomics were used to elucidate the complex mechanism of possible cardiotoxicity induced by high-dose HCSc. Animal experiments, molecular docking, Western blot and RT-qPCR experiments were also used to verify the above mechanism. These findings will inform further mechanistic studies and provide theoretical support for its safe clinical application.


Assuntos
Cardiotoxicidade , Metabolômica , Transcriptoma , Animais , Metabolômica/métodos , Masculino , Transcriptoma/efeitos dos fármacos , Ratos , Bufanolídeos/toxicidade , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Farmacologia em Rede , Cápsulas , Transdução de Sinais/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Anuros
2.
J Neurosci ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227158

RESUMO

Cochlear hair cells (HCs) sense sound waves and allow us to hear. Loss of HCs will cause irreversible sensorineural hearing loss. It is well known that DNA damage repair plays a critical role in protecting cells in many organs. However, how HCs respond to DNA damage and how defective DNA damage repair contributes to hearing loss remain elusive.In this study, we showed that cisplatin induced DNA damage in outer hair cells (OHCs) and promoted OHC loss, leading to hearing loss in mice of either sex. Cisplatin induced the expression of Brca1, a DNA damage repair factor, in OHCs. Deficiency of Brca1 induced OHC and hearing loss, and further promoted cisplatin-induced DNA damage in OHCs, accelerating OHC loss. This study provides the first in vivo evidence demonstrating that cisplatin mainly induces DNA damage in OHCs and that BRCA1 promotes repair of DNA damage in OHCs and prevents hearing loss. Our findings not only demonstrate that DNA-damage inducible agent generates DNA damage in postmitotic HCs, but also suggest that DNA repair factors, like BRCA1, protect postmitotic HCs from DNA-damage induced cell death and hearing loss.Significance statement Sensorineural hearing loss is the most severe hearing loss caused by irreversible loss of cochlear hair cells. Hair cells are vulnerable to aging and ototoxic drug. Though DNA damage repair plays a critical role in protecting cells in many organs, it is poorly understood how DNA damage is repaired in hair cells. This study provides the first in vivo evidence demonstrating that cisplatin mainly induces DNA damage in outer hair cells and that BRCA1 promotes repair of DNA damage in outer hair cells and prevents outer hair cell loss as well as hearing loss.

3.
J Biol Chem ; : 107768, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270819

RESUMO

Basal-like breast cancer may originate from luminal epithelial or cancerous cells. Inadequately repaired DNA damage impairs luminal differentiation and promotes aberrant luminal to basal trans-differentiation in mammary epithelial cells (MECs). Ubiquitin-specific peptidase 11 (USP11), a deubiquitinase, plays a critical role in DNA damage repair. The role of USP11 in controlling mammary cell differentiation and tumorigenesis remains poorly understood. We generated Usp11 knockout mice and breast cancer cell lines expressing wild-type (WT) and mutant form of USP11. By using these mutant mice, cell lines, and human USP11-deficient and -proficient breast cancer tissues, we tested how USP11 controls mammary cell fate. We generated Usp11 knock-out mice and found that deletion of Usp11 reduced the expression of E-cadherin and promoted DNA damage in MECs. Overexpression of WT USP11, but not a deubiquitinase-inactive mutant form of USP11, promoted luminal differentiation, enhanced DNA damage repair, and suppressed tumorigenesis in mice. Mechanistically, we found that USP11 enhanced the protein expression of E-cadherin dependent on its deubiquitinase activity, and that USP11 deubiquitinated E-cadherin at K738. We discovered that USP11 bound to E-cadherin through its C-terminal region. In human breast cancers, expression of USP11 was positively correlated with that of E-cadherin, and high USP11 predicted better recurrence-free survival. Our findings provide compelling genetic and biochemical evidence that USP11 not only promotes DNA damage repair but also deubiquitinates E-cadherin and maintains the luminal feature of mammary tumor cells, thereby suppressing luminal breast cancer.

4.
Phys Chem Chem Phys ; 26(38): 24821-24832, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39290189

RESUMO

Hydrochlorofluorocarbons (HCFCs) are important greenhouse gases and ozone-depleting substances. Thus, a thorough understanding of their atmospheric fate is essential for preventing and controlling atmospheric pollution. Herein, the atmospheric transformation mechanism of CF3CH2CClF2 (HCFC-235fa) by the OH radical and the Cl atom was carried out at the dual-level of CCSD(T)/aug-cc-pVTZ//M06-2X/6-311+G(d,p). The reaction rate coefficients were calculated using the multistructural canonical variational transition state theory with small curvature tunneling (MS-CVT/SCT) at 200-1000 K. The kMS-CVT/SCT(CF3CH2CClF2 + OH) and kMS-CVT/SCT(CF3CH2CClF2 + Cl) values are 9.05 × 10-15 and 1.95 × 10-17 cm3 molecule-1 s-1 at 297 K, respectively. The results show that the role of OH is more important than Cl in the degradation of CF3CH2CClF2. The atmospheric lifetimes (83 days-77.93 years), ozone destruction potential (0.001-0.023), and global warming potentials (GWP100 = 21.06-5157.35) of CF3CH2CClF2 were assessed, and these results indicate that CF3CH2CClF2 is atmospherically persistent and environmentally unfriendly. The evolution mechanisms of CF3C·HCClF2, CF3C(OO˙)HCClF2, and CF3C(O˙)HCClF2 in the presence of O2, HO2˙, and NO were investigated and discussed. The resulting products of CF3CH2CClF2 are mostly highly oxidized multi-functional compounds in the forms of aldehydes, ketones, and organic nitrates. A computational assessment of acute and chronic toxicities was performed at three levels of nutrition in order to improve the understanding of the potential toxicity of CF3CH2CClF2 and its degradation products to the aquatic environment. The acidification potential of CF3CH2CClF2 was calculated to be 1.141 and presumed to contribute to the formation of acid rain. The results may contribute to describing HCFCs' atmospheric fate, persistence, and environmental risks.

5.
Alzheimers Dement ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324544

RESUMO

INTRODUCTION: The multifactorial influence of repetitive transcranial magnetic stimulation (rTMS) on neuroplasticity in neural networks is associated with improvements in cognitive dysfunction and sleep disorders. The mechanisms of rTMS and the transcriptional-neuronal correlation in Alzheimer's disease (AD) patients with sleep disorders have not been fully elucidated. METHODS: Forty-six elderly participants with cognitive impairment (23 patients with low sleep quality and 23 patients with high sleep quality) underwent 4-week periods of neuronavigated rTMS of the angular gyrus and neuroimaging tests, and gene expression data for six post mortem brains were collected from another database. Transcription-neuroimaging association analysis was used to evaluate the effects on cognitive dysfunction and the underlying biological mechanisms involved. RESULTS: Distinct variable neuroplasticity in the anterior and posterior angular gyrus networks was detected in the low sleep quality group. These interactions were associated with multiple gene pathways, and the comprehensive effects were associated with improvements in episodic memory. DISCUSSION: Multitrajectory neuroplasticity is associated with complex biological mechanisms in AD-spectrum patients with sleep disorders. HIGHLIGHTS: This was the first transcription-neuroimaging study to demonstrate that multitrajectory neuroplasticity in neural circuits was induced via neuronavigated rTMS, which was associated with complex gene expression in AD-spectrum patients with sleep disorders. The interactions between sleep quality and neuronavigated rTMS were coupled with multiple gene pathways and improvements in episodic memory. The present strategy for integrating neuroimaging, rTMS intervention, and genetic data provide a new approach to comprehending the biological mechanisms involved in AD.

6.
Brain Res ; 1846: 149229, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255904

RESUMO

The APOE ɛ4 allele and age are risk factors for Alzheimer's disease (AD) and contribute to decreased executive function. However, the influence of APOE ɛ4 on the executive control network (ECN) in the AD continuum is still unclear. This study included 269 participants aged between 50 and 95 years old, based on ADNI data, including 104 cognitively normal (CN) individuals, 72 individuals with early mild cognitive impairment (EMCI), 55 individuals with late mild cognitive impairment (LMCI), and 38 AD patients. Within each disease group, participants were subdivided into APOE ɛ4 carriers and non-carriers. We explored brain regions within the ECN affected by the interactions between genes and disease states by resting-state functional magnetic resonance imaging (fMRI) and voxel-based two-way analysis of variance (ANOVA). Subsequently, functional connectivity (FC) between seeds and peak clusters were extracted and correlated with the cognitive performance. We found that the damages of carrying APOE ɛ4 in ECNs mainly distributed in the fronto-parietal and parietal-temporal systems. Functional network intergroup differences indicated increased intrafrontal and fronto-parietal connectivity at the early stage of AD and increased connectivity between the parietal lobe and related regions at late disease in these APOE ɛ4 carriers. Our conclusion is that the functional connectivity in the ECN exhibits different distinguishably patterns of impairment in the AD continuum under the influence of the APOE ɛ4 allele. Patients with different genotypes showed heterogeneity in functional network changes in the early stages of disease, which may be a potential biomarker for early AD.

7.
Mycology ; 15(3): 400-423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247897

RESUMO

The arthroconidial yeast-like species currently classified in the asexual genera Geotrichum and Saprochaete and the sexual genera Dipodascus, Galactomyces and Magnusiomyces are frequently associated with dairy and cosmetics production, fruit rot and human infection. However, the taxonomic system of these fungi has not been updated to accommodate the new nomenclature code adopting the "one fungus, one name" principle. Here, we performed phylogenetic analyses of these yeast-like species based on the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit of the rRNA gene. Two monophyletic groups were recognised from these species. One group contained Dipodascus, Galactomyces, and Geotrichum species and the other Magnusiomyces and Saprochaete species. We thus assigned the species in each group into one genus and selected the genus name Geotrichum for the first group and Magnusiomyces for the second one based on the principle of priority of publication. Five new Geotrichum species were identified from arthroconidial yeast strains recently isolated from various sources in China. The new species are described as Ge. dehoogii sp. nov., Ge. fujianense sp. nov., Ge. maricola sp. nov., Ge. smithiae sp. nov., and Ge. sinensis sp. nov.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39240062

RESUMO

Nineteen isolates representing a candidate for a novel yeast species belonging to the genus Spencermartinsiella were recovered from rotting wood samples collected at different sites in Atlantic Rainforest and Amazonian Forest ecosystems in Brazil. Similarity search of the nucleotide sequence of the intergenic spacer (ITS)-5.8S and large subunit D1/D2 regions of the ribosomal gene cluster showed that this novel yeast is closely related to Spencermartinsiella cellulosicola. The isolates differ by four nucleotide substitutions in the D1/D2 domain and six substitutions and 31 indels in the ITS region from the holotype of S. cellulosicola. Phylogenomic analysis based on 1474 single-copy orthologues for a set of Spencermartinsiella species whose whole genome sequences are available confirmed that the novel species is phylogenetically close to S. cellulosicola. The low average nucleotide identity value of 83% observed between S. cellulosicola and the candidate species confirms that they are distinct. The novel species produced asci with hemispherical ascospores. The name Spencermartinsiella nicolii sp. nov. is proposed. The holotype is CBS 14238T. The MycoBank number is MB855027. Interestingly, the D1/D2 sequence of the S. nicolii was identical to that of an uncultured strain of Spencermartinsiella causing systemic infection in a male adult crocodile (Crocodylus niloticus). The characterization of some virulence factors and antifungal susceptibility of S. nicolii isolates suggest that this yeast may be an opportunistic pathogen for animals, including humans; the isolates grow at 37 °C.


Assuntos
DNA Fúngico , Filogenia , Saccharomycetales , Análise de Sequência de DNA , Madeira , Brasil , Madeira/microbiologia , DNA Fúngico/genética , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Saccharomycetales/classificação , Técnicas de Tipagem Micológica , DNA Espaçador Ribossômico/genética , Floresta Úmida , Florestas
9.
ACS Appl Mater Interfaces ; 16(34): 45214-45223, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39145439

RESUMO

The abuse and excessive discharge of organic pollutants such as nitroaromatic compounds (NACs) have become a hot topic of concern for all humanity and society, and the development of fast, effective, and targeted technical means for detecting NACs also faces many challenges. Here, we reported a strontium-based metal-organic framework (MOF) {[Sr2(tcbpe)(H2O)4]}n (Sr-tcbpe), in which tcbpe represents deprotonated 4',4‴,4″‴,4‴‴-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'biphenyl]-4-carboxylic acid)). In Sr-tcbpe, Sr-O polyhedron and deprotonated tcbpe4- ligand have a staggered connection to form a self-assembled three-dimensional network structure. In addition, it is found that Sr-tcbpe undergoes no luminescent color change when grinding under solvent protection, while mechanochromic fluorescence behavior is observed when grinding directly, leading to luminescent color changes from cyan to green (Sr-tcbpe-G). Additionally, Sr-tcbpe and Sr-tcbpe-G could selectively detect PNP, DNP, and TNP, and Sr-tcbpe achieves visual fluorescence sensing detection toward TNP at a limit of detection as low as 2.25 µM. Moreover, during the detection process, unexpectedly, TNP exhibits a selective etching effect on Sr-tcbpe, which could drill nano holes with different sizes on the surface area of MOF materials to a certain extent, achieving the conversion of chemical energy to mechanical energy. In addition, the successful preparation of a portable sensor Sr-tcbpe@gypsum block provides a platform for the perfect combination of mechanochromic fluorescence behavior and visualization detection toward TNP. It lays the foundation for the practical application of MOF materials in daily life.

10.
Sci Total Environ ; 951: 175814, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39197773

RESUMO

Anaerobic digestion provides a solution to the inefficient use of carbon resources caused by improper disposal of corn stover-based ethanol stillage (CES). In this regard, we developed a single-chamber anaerobic digestion integrated microbial electrolysis cells system (AD-MEC) to convert CES into biogas while simultaneously upgrading biogas in-situ by employing voltages ranging from 0 to 2.5 V. Our results demonstrated that applying 1.0 V increased the CH4 yield by 55 % and upgraded the CH4 content in-situ to 82 %. This voltage also promoted the well-formed biofilm on the electrodes, resulting in a 20-fold increase in current. However, inhibition was observed at high voltages (1.5-2.5 V), suppressing syntrophic organic acid-oxidizing bacteria (SOB). The dissociation between SOB and methanogens led to accumulation of propionic and butyric acid, which, in turn, inhibited methanogens. The degradation of CES was accelerated by unclassified_o_norank_c_Desulfuromonadia on the anode, likely leading to an increase in mixotrophic methanogenesis due to the synergistic interaction among Aminobacterium, Sedimentibacter, and Methanosarcina. Furthermore, the enrichment of electroactive bacteria (EB) such as Enterococcus and Desulfomicrobium likely facilitates direct interspecies electron transfer to Methanobacterium, thereby promoting the conversion of CO2 to CH4 through hydrogenotrophic methanogenesis. Rather than initially stimulating the EB in the bulk solution to accelerate the start-up process of AD, our study revealed that applying mild voltage up to 1.0 V tended to mitigate the negative impact on the original microorganisms, as it gradually enriched EB on the electrode, thereby enhancing biogas production.


Assuntos
Biocombustíveis , Eletrólise , Etanol , Metano , Metano/metabolismo , Anaerobiose , Etanol/metabolismo , Reatores Biológicos , Celulose/metabolismo
11.
Molecules ; 29(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39202950

RESUMO

Photoactive artificial nanocatalysts that mimic natural photoenergy systems can yield clean and renewable energy. However, their poor photoabsorption capability and disfavored photogenic electron-hole recombination hinder their production. Herein, we designed two nanocatalysts with various microstructures by combining the tailored self-assembly of the meso-tetra(p-hydroxyphenyl) porphine photosensitizer with the growth of titanium dioxide (TiO2). The porphyrin photoabsorption antenna efficiently extended the absorption range of TiO2 in the visible region, while anatase TiO2 promoted the efficient electron-hole separation of porphyrin. The photo-induced electrons were transferred to the surface of the Pt co-catalyst for the generation of hydrogen via water splitting, and the hole was utilized for the decomposition of methyl orange dye. The hybrid structure showed greatly increased photocatalytic performance compared to the core@shell structure due to massive active sites and increased photo-generated electron output. This controlled assembly regulation provides a new approach for the fabrication of advanced, structure-dependent photocatalysts.

12.
J Pers Soc Psychol ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146074

RESUMO

Status researchers have recognized virtue, competence, and dominance as distinct, viable routes to attaining status. While acknowledging that these routes could be compatible and may not operate independently, prior research relying on a variable-centered perspective has largely neglected their potentially complex interactions. This article integrates a person-centered perspective with the variable-centered perspective to explore how different routes conjointly shape workplace status. Study 1A (N = 537) employs latent profile analysis, an inductive person-centered method, to re-analyze existing survey data, identifying seven distinct profiles of virtue, competence, and dominance that people use to attain status. Study 1B (N = 988) confirms the existence of these profiles in an independent sample of full-time U.S. workers, albeit with nuanced differences in levels. Across our initial studies, these profiles differ in status attainment, with a profile characterized by high virtue and competence but low dominance associated with the highest status-a key discovery challenging to uncover using the variable-centered approach alone. Study 2 (N = 792), a preregistered experiment manipulating the three routes in hypothetical scenarios, gathers causal evidence confirming these profiles' varying effectiveness. Study 3 (N = 785), another preregistered experiment using refined manipulations, corroborates the findings of Study 2 and provides evidence for the relevance of these causal insights to real-life workplace contexts. This research has several crucial implications: reaching the top requires a combination of multiple routes; conflating virtue and competence under the umbrella of "prestige" obscures their unique contributions; and dominance's positive effect on status is not universally applicable. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

13.
Dalton Trans ; 53(31): 13216, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39072508

RESUMO

Retraction of 'Multifunctional luminescence sensing and white light adjustment of lanthanide metal-organic frameworks constructed from the flexible cyclotriphosphazene-derived hexacarboxylic acid ligand' by Meng Wang et al., Dalton Trans., 2021, 50, 14618-14628, https://doi.org/10.1039/D1DT02560K.

14.
Molecules ; 29(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065002

RESUMO

The metal-free porphyrins protonation has gained interest over five decades because its structure modification and hardly monoacid intermediate isolation. Here, upon the hydrogen atom abstraction processes, one step diproptonated H3STTP(BF4)2 (STTP = 5,10,15,20-tetraphenyl-21-thiaporphyrin) (3) and stepwise protonated HS2TTPSbCl6 (5) and diprotonated H2S2TTP(BF4)2 (6) (S2TTP = 5,10,15,20-tetraphenyl-21,23-thiaporphyrin) compounds were obtained using HSTTP and S2TTP with oxidants. The closed-shell protonated compounds were fully characterized using XRD, UV-vis, IR and NMR spectra. In addition, the reduced 19π compounds [K(2,2,2)]HSTTP (2) and [K(2,2,2)]S2TTP (7) were synthesized by the ligands with reductant KC8 in THF solution. These two open-shell compounds were characterized with UV-vis, IR and EPR spectroscopies. The semiempirical ZINDO/S method was employed to analyze the HOMO/LUMO gap lever and identify the electronic transitions of the UV-vis spectra of the closed- and open-shell porphyrin compounds.

15.
Inorg Chem ; 63(31): 14559-14569, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39031913

RESUMO

Regulating mixed ligands to change the functional properties of metal-organic frameworks (MOFs) has been an important topic; especially, the structural changes have significant implications for the transformation of sensing response in different solvent channels. Herein, two [Cd (DPNDI) (NH2-BDC)0.5(NO3)]·2.25DMF (1) and [Cd(DPNDI)(NH2-AIPA)]·0.5DMF (2) (DPNDI = N,N-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide, NH2-BDC = 2-amino terephthalic acid, NH2-AIPA = 5-aminoisophthalic acid) were synthesized by the solvothermal method. Structural analysis shows that complex 1 has a two-dimensional planar network structure and complex 2 exhibits a three-dimensional network structure, endowing its potential as an efficient fluorescence sensor for phenolic compound detection under different solvent environments. Both complexes showed high fluorescence quenching sensitivity to phenolics in a water medium. Conversely, complex 1 showed a fluorescence enhancement response to phenolic pollutants in an ethanol system with significantly low detection limits and recyclability. The detection limits were 0.58 µM for TNP, 1.3 µM for DNP, and 2.43 µM for PCP. In addition, the uncoordinated amino groups in the complexes promote them to exhibit excellent iodine adsorption performance. Especially, complex 2 can serve as an adsorbent for iodine in cyclohexane solution with better adsorption efficiency than that of complex 1, and its adsorption capacity can reach 505 mg/g. The mixed ligands regulation strategy of NDI-based MOFs will open up an effective avenue for the conversion of fluorescence signals in dual-solvent channels and play simultaneously important roles in multiple applications.

16.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39077918

RESUMO

Repetitive transcranial magnetic stimulation is used in early-stage Alzheimer's disease to slow progression, but heterogeneity in response results in different treatment outcomes. The mechanisms underlying this heterogeneity are unclear. This study used resting-state neuroimaging to investigate the variability in episodic memory improvement from angular gyrus repetitive transcranial magnetic stimulation and tracked the neural circuits involved. Thirty-four amnestic mild cognitive impairment patients underwent angular gyrus repetitive transcranial magnetic stimulation (4 weeks, 20 Hz, 100% resting motor threshold) and were divided into high-response and low-response groups based on minimal clinically important differences in auditory verbal learning test scores. Baseline and pre/post-treatment neural circuit activities were compared. Results indicated that the orbital middle frontal gyrus in the orbitofrontal cortex network and the precuneus in the default mode network had higher local activity in the low-response group. After treatment, changes in local and remote connectivity within brain regions of the orbitofrontal cortex, default mode network, visual network, and sensorimotor network showed opposite trends and were related to treatment effects. This suggests that the activity states of brain regions within the orbitofrontal cortex and default mode network could serve as imaging markers for early cognitive compensation in amnestic mild cognitive impairment patients and predict the aftereffects of repetitive transcranial magnetic stimulation response.


Assuntos
Disfunção Cognitiva , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Feminino , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/diagnóstico por imagem , Idoso , Imageamento por Ressonância Magnética , Resultado do Tratamento , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Memória Episódica , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem
17.
Food Microbiol ; 123: 104566, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038883

RESUMO

Daqu is used as the fermentation starter of Baijiu and contributes diversified functional microbes for saccharifying grains and converting sugars into ethanol and aroma components in Baijiu products. Daqu is mainly classified into three types, namely low (LTD), medium (MTD) and high (HTD) temperature Daqu, according to the highest temperatures reached in their fermentation processes. In this study, we used the PacBio small-molecule real-time (SMRT) sequencing technology to determine the full-length 16 S rRNA gene sequences from the metagenomes of 296 samples of different types of Daqu collected from ten provinces in China, and revealed the bacterial diversity at the species level in the Daqu samples. We totally identified 310 bacteria species, including 78 highly abundant species (with a relative abundance >0.1% each) which accounted for 91.90% of the reads from all the Daqu samples. We also recognized the differentially enriched bacterial species in different types of Daqu, and in the Daqu samples with the same type but from different provinces. Specifically, Lactobacillales, Enterobacterales and Bacillaceae were significantly enriched in the LTD, MTD and HTD groups, respectively. The potential co-existence and exclusion relationships among the bacteria species involved in all the Daqu samples and in the LTD, MTD and HTD samples from a specific region were also identified. These results provide a better understanding of the bacterial diversity in different types of Daqu at the species level.


Assuntos
Bactérias , Fermentação , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , China , Microbiota , Filogenia , DNA Bacteriano/genética , Biodiversidade , Bebidas Alcoólicas/microbiologia , Bebidas Alcoólicas/análise , Microbiologia de Alimentos , Metagenoma , Alimentos Fermentados/microbiologia
18.
Nat Microbiol ; 9(7): 1686-1699, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898217

RESUMO

The continuing emergence of invasive fungal pathogens poses an increasing threat to public health. Here, through the China Hospital Invasive Fungal Surveillance Net programme, we identified two independent cases of human infection with a previously undescribed invasive fungal pathogen, Rhodosporidiobolus fluvialis, from a genus in which many species are highly resistant to fluconazole and caspofungin. We demonstrate that R. fluvialis can undergo yeast-to-pseudohyphal transition and that pseudohyphal growth enhances its virulence, revealed by the development of a mouse model. Furthermore, we show that mouse infection or mammalian body temperature induces its mutagenesis, allowing the emergence of hypervirulent mutants favouring pseudohyphal growth. Temperature-induced mutagenesis can also elicit the development of pan-resistance to three of the most commonly used first-line antifungals (fluconazole, caspofungin and amphotericin B) in different Rhodosporidiobolus species. Furthermore, polymyxin B was found to exhibit potent activity against the pan-resistant Rhodosporidiobolus mutants. Collectively, by identifying and characterizing a fungal pathogen in the drug-resistant genus Rhodosporidiobolus, we provide evidence that temperature-dependent mutagenesis can enable the development of pan-drug resistance and hypervirulence in fungi, and support the idea that global warming can promote the evolution of new fungal pathogens.


Assuntos
Antifúngicos , Mutagênese , Animais , Camundongos , Humanos , Virulência/genética , Antifúngicos/farmacologia , China , Temperatura Corporal , Modelos Animais de Doenças , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/efeitos dos fármacos , Caspofungina/farmacologia , Testes de Sensibilidade Microbiana , Fluconazol/farmacologia , Micoses/microbiologia , Farmacorresistência Fúngica Múltipla/genética , Farmacorresistência Fúngica/genética
19.
Behav Brain Res ; 471: 115117, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-38908485

RESUMO

INTRODUCTION: Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) of the left angular gyrus has been broadly investigated for the treatment of amnestic mild cognitive impairment (aMCI). Although abnormalities in two hippocampal networks, the anterior-temporal (AT) and posterior-medial (PM) networks, are consistent with aMCI and are potential therapeutic targets for rTMS, the underlying mechanisms of the therapeutic effects of rTMS on hippocampal network connections remain unknown. Here, we assessed the impact of left angular gyrus rTMS on activity in these networks and explored whether the treatment response was due to the distance between the clinically applied target (the group average optimal site) and the personalized target in patients with aMCI. METHODS: Sixty subjects clinically diagnosed with aMCI participated in this study after 20 sessions of sham-controlled rTMS targeting the left angular gyrus. Resting-state functional magnetic resonance imaging and neuropsychological assessments were performed before and after rTMS. Functional connectivity alterations in the PM and AT networks were assessed using seed-based functional connectivity analysis and two-factor repeated measures analysis of variance (ANOVA). We then computed the correlations between the functional connectivity changes and clinical rating scales. Finally, we examined whether the Euclidean distance between the clinically applied and personalized targets predicted the subsequent treatment response. RESULTS: Compared with the sham group, the active rTMS group showed rTMS-induced deactivation of functional connectivity within the medial temporal lobe-AT network, with a negative correlation with episodic memory score changes. Moreover, the active rTMS lowers the interdependency of changes in the PM and AT networks. Finally, the Euclidean distance between the clinically applied and personalized target distances could predict subsequent network lever responses in the active rTMS group. CONCLUSIONS: Neuro-navigated rTMS selectively modulates widespread functional connectivity abnormalities in the PM and AT hippocampal networks in aMCI patients, and the modulation of hippocampal-AT network connectivity can efficiently reverse memory deficits. The results also highlight the necessity of personalized targets for fMRI.


Assuntos
Disfunção Cognitiva , Hipocampo , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Estimulação Magnética Transcraniana/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Idoso , Disfunção Cognitiva/terapia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Pessoa de Meia-Idade , Lobo Parietal/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Lobo Temporal/fisiopatologia , Lobo Temporal/diagnóstico por imagem
20.
Metab Eng ; 84: 117-127, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38901555

RESUMO

Effective utilization of glucose, xylose, and acetate, common carbon sources in lignocellulose hydrolysate, can boost biomanufacturing economics. However, carbon leaks into biomass biosynthesis pathways instead of the intended target product remain to be optimized. This study aimed to enhance α-carotene production by optimizing glucose, xylose, and acetate utilization in a high-efficiency Corynebacterium glutamicum cell factory. Heterologous xylose pathway expression in C. glutamicum resulted in strain m4, exhibiting a two-fold increase in α-carotene production from xylose compared to glucose. Xylose utilization was found to boost the biosynthesis of pyruvate and acetyl-CoA, essential precursors for carotenoid biosynthesis. Additionally, metabolic engineering including pck, pyc, ppc, and aceE deletion, completely disrupted the metabolic connection between glycolysis and the TCA cycle, further enhancing α-carotene production. This strategic intervention directed glucose and xylose primarily towards target chemical production, while acetate supplied essential metabolites for cell growth recovery. The engineered strain C. glutamicum m8 achieved 30 mg/g α-carotene, 67% higher than strain m4. In fed-batch fermentation, strain m8 produced 1802 mg/L of α-carotene, marking the highest titer reported to date in microbial fermentation. Moreover, it exhibited excellent performance in authentic lignocellulosic hydrolysate, producing 216 mg/L α-carotene, 1.45 times higher than the initial strain (m4). These labor-division strategies significantly contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources.


Assuntos
Corynebacterium glutamicum , Engenharia Metabólica , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Glucose/metabolismo , Xilose/metabolismo , Carotenoides/metabolismo , Carbono/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA