Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886898

RESUMO

The spontaneous interaction between human papillomavirus type 16 (HPV16) L1 virus-like particles (VLPs) and non-functionalized gold nanoparticles (nfGNPs) interferes with the nfGNPs' salt-induced aggregation, inhibiting the red-blue color shift in the presence of NaCl. Electron microscopy and competition studies showed that color-shift inhibition is a consequence of direct nfGNP-VLP interaction and, thus, may produce a negative impact on the virus entry cell process. Here, an in vitro infection system based on the HPV16 pseudovirus (PsV) was used to stimulate the natural infection process in vitro. PsVs carry a pseudogenome with a reporter gene, resulting in a fluorescent signal when PsVs infect a cell, allowing quantification of the viral infection process. Aggregation assays showed that nfGNP-treated PsVs also inhibit color shift in the presence of NaCl. High-resolution microscopy confirmed nfGNP-PsV complex formation. In addition, PsVs can interact with silver nanoparticles, suggesting a generalized interaction of metallic nanoparticles with HPV16 capsids. The treatment of PsVs with nfGNPs produced viral infection inhibition at a higher level than heparin, the canonical inhibitor of HPV infection. Thus, nfGNPs can efficiently interfere with the HPV16 cell entry process and may represent a potential active component in prophylactic formulations to reduce the risk of HPV infection.


Assuntos
Nanopartículas Metálicas , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Proteínas do Capsídeo/genética , Ouro/farmacologia , Ouro/uso terapêutico , Papillomavirus Humano 16/genética , Humanos , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/virologia , Infecções por Papillomavirus/prevenção & controle , Prata , Cloreto de Sódio/farmacologia
2.
Nanomaterials (Basel) ; 9(11)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752428

RESUMO

Bimetallic Au@Pt nanoparticles (NPs) with Pt monolayer shell are of much interest for applications in heterogeneous catalysts because of enhanced catalytic activity and very low Pt-utilization. However, precisely controlled synthesis with uniform Pt-monolayers and stability on the AuNPs seeds remain elusive. Herein, we report the controlled deposition of Pt-monolayer onto uniform AuNPs seeds to obtain Au@Pt core-shell NPs and their Pt-coverage dependent electrocatalytic activity for methanol electro-oxidation. The atomic ratio between Au/Pt was effectively tuned by varying the precursor solution ratio in the reaction solution. The morphology and atomic structure of the Au@Pt NPs were analyzed by high-resolution scanning transmission electron microcopy (HR-STEM) and X-ray diffraction (XRD) techniques. The results demonstrated that the Au@Pt core-shell NPs with Pt-shell thickness (atomic ratio 1:2) exhibit higher electrocatalytic activity for methanol electro-oxidation reaction, whereas higher and lower Pt ratios showed less overall catalytic performance. Such higher catalytic performance of Au@Pt NPs (1:2) can be attributed to the weakened CO binding on the Pt/monolayers surface. Our present synthesis strategy and optimization of the catalytic activity of Au@Pt core-shell NPs catalysts provide promising approach to rationally design highly active catalysts with less Pt-usage for high performance electrocatalysts for applications in fuel cells.

3.
Inorg Chem ; 57(16): 10090-10099, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30066565

RESUMO

Bi2Te3 is a well-studied material because of its thermoelectric properties and, recently, has also been studied as a topological insulator. However, it is only one of several compounds in the Bi-Te system. This work presents a study of the physical vapor transport growth of Bi-Te material focused on determining the growth conditions required to selectively obtain a desired phase of the Bi-Te system, i.e., Bi2Te3, BiTe, and Bi4Te3. Epitaxial films of these compounds were prepared on sapphire and silicon substrates. The results were verified by X-ray diffraction, Raman spectroscopy, and Rutherford backscattering spectrometry.

4.
ACS Omega ; 2(5): 1896-1904, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023649

RESUMO

Development of biosensors with high sensitivity, high spatial resolution, and low cost has received significant attention for their applications in medical diagnosis, diabetes management, and environment-monitoring. However, achieving a direct electrical contact between redox enzymes and electrode surfaces and enhancing the operational stability still remain as challenges. Inorganic metal nanocrystals (NCs) with precisely controlled shape and surface structure engineered with an appropriate organic coating can help overcome the challenges associated with their stability and aggregation for practical biosensor applications. Herein, we describe a facile, room-temperature, seed-mediated solution-phase route to synthesize monodisperse Pd@Pt core-shell nanocubes with subnanometer-thick platinum (Pt) shells. The enzyme electrode consisting of Pd@Pt core-shell NCs was first covered with a chitosan (CS) polymer and then glucose oxidase (GOx) immobilized by a covalent linkage to the CS. This polymer permits covalent immobilization through active amino (-NH) side groups to improve the stability and preserve the biocatalytic functions while the Pd@Pt NCs facilitate enhanced direct electron transfer (DET) in the biosensor. The resultant biosensor promotes DET and exhibits excellent performance for the detection of glucose, with a sensitivity of 6.82 µA cm-2 mM-1 and a wide linear range of 1-6 mM. Our results demonstrate that sensitive electrochemical glucose detection based on Pd@Pt core-shell NCs provides remarkable opportunities for designing low-cost and sensitive biosensors.

5.
J Colloid Interface Sci ; 428: 32-5, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24910031

RESUMO

HYPOTHESIS: Heterogeneous nucleation of silver oxide (Ag2O) onto oxide microparticles (OMPs) followed by spontaneous thermal decomposition produce nanostructures made of OMPs decorated with silver nanoparticles (OMP|AgNPs). EXPERIMENTS: Colloidal chemistry methods have been used to produce the decoration of OMPs with silver nanoparticles (AgNPs), by carrying out the Ag2O precipitation/thermal decomposition. The process is driven in water enriched acetone medium containing NaOH, NH3, AgNO3 and SiO2MPs as substrate. Optical and morphological properties of OMP|AgNPs were characterized by using STEM, EDS, HRTEM and Raman spectroscopy. FINDINGS: A new synthetic method to decorate OMPs (TiO2, SiO2) with metallic AgNPs in a single step/single pot reaction is proven effective to produce OMP|AgNPs either in aqueous or water enriched media.


Assuntos
Nanopartículas Metálicas/química , Óxidos/química , Dióxido de Silício/química , Compostos de Prata/química , Prata/química , Titânio/química , Precipitação Química , Nanopartículas Metálicas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA