Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948450

RESUMO

Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum (Schwabe), is a destructive disease worldwide, reducing wheat yield and quality. To accelerate the improvement of scab tolerance in wheat, we assessed the International Triticeae Mapping Initiative mapping population (ITMI/MP) for Type I and II resistance against a wide population of Argentinean isolates of F. graminearum. We discovered a total of 27 additive QTLs on ten different (2A, 2D, 3B, 3D, 4B, 4D, 5A, 5B, 5D and 6D) wheat chromosomes for Type I and Type II resistances explaining a maximum of 15.99% variation. Another four and two QTLs for thousand kernel weight in control and for Type II resistance, respectively, involved five different chromosomes (1B, 2D, 6A, 6D and 7D). Furthermore, three, three and five QTLs for kernel weight per spike in control, for Type I resistance and for Type II resistance, correspondingly, involved ten chromosomes (2A, 2D, 3B, 4A, 5A, 5B, 6B, 7A, 7B, 7D). We were also able to detect five and two epistasis pairs of QTLs for Type I and Type II resistance, respectively, in addition to additive QTLs that evidenced that FHB resistance in wheat is controlled by a complex network of additive and epistasis QTLs.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença , Fusarium/patogenicidade , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Epistasia Genética , Fenótipo , Melhoramento Vegetal , Triticum/microbiologia
4.
Theor Appl Genet ; 133(9): 2655-2671, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32518991

RESUMO

KEY MESSAGE: This study identified and validated two QTL associated with spike fertile floret and fruiting efficiencies. They represent two new loci to use in MAS to improve wheat yield potential. The spike fruiting efficiency (FE-grains per unit spike dry weight at anthesis, GN/SDW) is a promising trait to improve wheat yield potential. It depends on fertile floret efficiency (fertile florets per unit SDW-FFE, FF/SDW) and grain set (grains per fertile floret-GST). Given its difficult measurement, it is often estimated as the grains per unit of nongrain spike dry weight at maturity (FEm). In this study, quantitative trait loci (QTL) were mapped using a double haploid population (Baguette 19/BIOINTA 2002, with high and low FE, respectively) genotyped with the iSelect 90 K SNP array and evaluated in five environments. We identified 37 QTL, but two were major with an R2 > 10% and stable for being at least present in three environments: the QFEm.perg-3A (on Chr. 3A, 51.6 cM, 685.12 Mb) for FEm and the QFFE.perg-5A (on Chr. 5A, 42.1 cM, 461.49 Mb) for FFE, FE and FEm. Both QTL were validated using two independent F2 populations and KASP markers. For the most promising QTL, QFFE.perg-5A, the presence of the allele for high FFE resulted in + 4% FF, + 9% GN, + 13% GST, + 16% yield gSDW-1 and + 5% yield spike-1. QFEm.perg-3A and QFFE.perg-5A represent two new loci to use in MAS to improve wheat yield potential.


Assuntos
Flores/crescimento & desenvolvimento , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Triticum/genética , Alelos , Mapeamento Cromossômico , Genótipo , Haploidia , Fenótipo , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA