Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 650(Pt 2): 2210-2220, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30292114

RESUMO

Scarcity of water and concerns about the ecotoxicity of micro-contaminants are driving an interest in the use of advanced tertiary processes in wastewater treatment plants. However, the life cycle environmental implications of these treatments remain uncertain. To address this knowledge gap, this study evaluates through life cycle assessment the following four advanced process options for removal of micro-contaminants from real effluents: i) solar photo-Fenton (SPF) operating at acidic pH; ii) acidic SPF coupled with nanofiltration (NF); iii) SPF operating at neutral pH; and iv) neutral SPF coupled with NF. The results show that acidic SPF coupled with NF is the best option for all 15 impacts considered. For example, its climate change potential is almost three times lower than that of the neutral SPF process (311 vs 928 kg CO2 eq./1000 m3 of treated effluent). The latter is the worst option for 12 impact categories. For the remaining three impacts (acidification, depletion of metals and particulate matter formation), acidic SPF without NF is least sustainable; it is also the second worst option for seven other impacts. Neutral SPF with NF is the second worst technology for climate change, ozone and fossil fuel depletion as well as marine eutrophication. In summary, both types of SPF perform better environmentally with than without NF and the acidic SPF treatment is more sustainable than the neutral version. Thus, the results of this work suggest that ongoing efforts on developing neutral SPF should instead be focused on further improvements of its acidic equivalent coupled with NF. These results can also be used to inform future development of policy related to the removal of micro-contaminants from wastewater.

2.
Sci Total Environ ; 636: 1155-1170, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29913578

RESUMO

Around 40% of electricity in Chile is supplied by renewables and the rest by fossil fuels. Despite the growing electricity demand in the country, its environmental impacts are as yet unknown. To address this gap, the current study presents the first comprehensive assessment of the life cycle environmental sustainability of electricity generation in Chile. Both the individual sources and the electricity mix over the past 10 years are considered. The following sources present in the electricity mix are evaluated: coal, oil, natural gas, biogas, biomass, wind, solar photovoltaics (PV) and hydropower. In total, 10 electricity technologies and 174 power plants installed across the country have been considered. Eleven environmental impacts have been estimated, including global warming, human toxicity, ecotoxicities, as well as resource and ozone layer depletion. The results reveal that hydropower is environmentally the most sustainable option across the impacts, followed by onshore wind and biogas. Electricity from natural gas has 10%-84% lower impacts than biomass for seven categories. It is also 13%-98% better than solar PV for six impacts and 17%-66% than wind for four categories. Solar PV has the highest abiotic depletion potential due to the use of scarce elements in the manufacture of panels. While electricity generation has grown by 44% in the past 10 years, all the impacts except ozone layer depletion have increased by 1.6-2.7 times. In the short term, environmental regulations should be tightened to improve the emissions control from coal and biomass plants. In the medium term, the contribution of renewables should be ramped up, primarily increasing the hydro, wind and biogas capacity. Coal and oil should be phased out, using natural gas as a transitional fuel to help the stability of the grid with the increasing contribution of intermittent renewables.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA