Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 388(1-2): 32-40, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24582860

RESUMO

Thyroid hormone (TH) modulates serum cholesterol by acting on TH receptor ß1 (TRß1) in liver to regulate metabolic gene sets. In rodents, one important TH regulated step involves induction of Cyp7a1, an enzyme in the cytochrome P450 family, which enhances cholesterol to bile acid conversion and plays a crucial role in regulation of serum cholesterol levels. Current models suggest, however, that Cyp7a1 has lost the capacity to respond to THs in humans. We were prompted to re-examine TH effects on cholesterol metabolic genes in human liver cells by a recent study of a synthetic TH mimetic which showed that serum cholesterol reductions were accompanied by increases in a marker for bile acid synthesis in humans. Here, we show that TH effects upon cholesterol metabolic genes are almost identical in mouse liver, mouse and human liver primary cells and human hepatocyte cell lines. Moreover, Cyp7a1 is a direct TR target gene that responds to physiologic TR levels through a set of distinct response elements in its promoter. These findings suggest that THs regulate cholesterol to bile acid conversion in similar ways in humans and rodent experimental models and that manipulation of hormone signaling pathways could provide a strategy to enhance Cyp7a1 activity in human patients.


Assuntos
Colesterol 7-alfa-Hidroxilase/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/fisiologia , Adenoviridae/genética , Animais , Sequência de Bases , Colesterol 7-alfa-Hidroxilase/metabolismo , Indução Enzimática , Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Receptores beta dos Hormônios Tireóideos/genética
2.
J Mol Biol ; 425(16): 2878-93, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23707408

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear transcription factors. They are involved in mediating numerous physiological effects in humans, including glucose and lipid metabolism. PPARα ligands effectively treat dyslipidemia and have significant antiinflammatory and anti-atherosclerotic activities. These effects and their ligand-dependent activity make nuclear receptors obvious targets for drug design. Here, we present the structure of the human PPARα in complex with WY14643, a member of fibrate class of drug, and a widely used PPAR activator. The crystal structure of this complex suggests that WY14643 induces activation of PPARα in an unusual bipartite mechanism involving conventional direct helix 12 stabilization and an alternative mode that involves a second ligand in the pocket. We present structural observations, molecular dynamics and activity assays that support the importance of the second site in WY14643 action. The unique binding mode of WY14643 reveals a new pattern of nuclear receptor ligand recognition and suggests a novel basis for ligand design, offering clues for improving the binding affinity and selectivity of ligand. We show that binding of WY14643 to PPARα was associated with antiinflammatory disease in a human corneal cell model, suggesting possible applications for PPARα ligands.


Assuntos
PPAR alfa/agonistas , PPAR alfa/química , Pirimidinas/química , Pirimidinas/metabolismo , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Células Cultivadas , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
3.
Mol Pharmacol ; 81(6): 788-99, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22391103

RESUMO

The peroxisome proliferator-activated receptor γ (PPARγ) is a target for treatment of type II diabetes and other conditions. PPARγ full agonists, such as thiazolidinediones (TZDs), are effective insulin sensitizers and anti-inflammatory agents, but their use is limited by adverse side effects. Luteolin is a flavonoid with anti-inflammatory actions that binds PPARγ but, unlike TZDs, does not promote adipocyte differentiation. However, previous reports suggested variously that luteolin is a PPARγ agonist or an antagonist. We show that luteolin exhibits weak partial agonist/antagonist activity in transfections, inhibits several PPARγ target genes in 3T3-L1 cells (LPL, ORL1, and CEBPα) and PPARγ-dependent adipogenesis, but activates GLUT4 to a similar degree as rosiglitazone, implying gene-specific partial agonism. The crystal structure of the PPARγ ligand-binding domain (LBD) reveals that luteolin occupies a buried ligand-binding pocket (LBP) but binds an inactive PPARγ LBD conformer and occupies a space near the ß-sheet region far from the activation helix (H12), consistent with partial agonist/antagonist actions. A single myristic acid molecule simultaneously binds the LBP, suggesting that luteolin may cooperate with other ligands to bind PPARγ, and molecular dynamics simulations show that luteolin and myristic acid cooperate to stabilize the Ω-loop among H2', H3, and the ß-sheet region. It is noteworthy that luteolin strongly suppresses hypertonicity-induced release of the pro-inflammatory interleukin-8 from human corneal epithelial cells and reverses reductions in transepithelial electrical resistance. This effect is PPARγ-dependent. We propose that activities of luteolin are related to its singular binding mode, that anti-inflammatory activity does not require H12 stabilization, and that our structure can be useful in developing safe selective PPARγ modulators.


Assuntos
Luteolina/farmacologia , PPAR gama/agonistas , Células 3T3-L1 , Animais , Sequência de Bases , Primers do DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Luteolina/química , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ácido Mirístico/química , PPAR gama/química , PPAR gama/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Tiazolidinedionas/antagonistas & inibidores , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA