Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FEBS Lett ; 597(16): 2072-2085, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489921

RESUMO

Cyclin/cyclin-dependent kinase (CDK) heterodimers have multiple phosphorylation targets and may alter the activity of these targets. Proteins from different metabolic processes are among the phosphorylation targets, that is, enzymes of central carbon metabolism. This work explores the interaction of Cyc/CDK complex members with the glycolytic enzymes hexokinase 7 (HXK7) and glyceraldehyde-3-phosphate dehydrogenase (GAP). Both enzymes interacted steadily with CycD2;2, CycB2;1 and CDKA;1 but not with CDKB1;1. However, Cyc/CDKB1;1 complexes phosphorylated both enzymes, decreasing their activities. Treatment with a CDK-specific inhibitor (RO-3306) or with lambda phosphatase after kinase assay restored total HXK7 activity, but not GAP activity. In enzymatic assays, increasing concentrations of CDKB1;1, but not of CycD2;2, CycB2;1 or CycD2;2/CDKB1;1 complex, decreased GAP activity. Cell cycle regulators may modulate carbon channeling in glycolysis by two different mechanisms: Cyc/CDK-mediated phosphorylation of targets (e.g., HXK7; canonical mechanism) or by direct and transient interaction of the metabolic enzyme (e.g., GAP) with CDKB1;1 without a Cyc partner (alternative mechanism).


Assuntos
Proteínas de Ciclo Celular , Hexoquinase , Proteínas de Ciclo Celular/metabolismo , Zea mays/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicólise , Ciclo Celular
2.
Plant Sci ; 280: 297-304, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30824007

RESUMO

The Proliferating Cell Nuclear Antigen, PCNA, has roles in both G1 and S phases of the cell cycle. Here we show that maize PCNA can be found in cells in structures of a trimer or a dimer of trimer, in complexes of high molecular mass that change in size as germination proceeds, co-eluting with cell cycle proteins as CycD3;1 and CDKs (A/B1;1). Using different methodological strategies, we show that PCNA actually interacts with CycD3;1, CDKA, CDKB1;1, KRP1;1 and KRP4;1, all of which contain PIP or PIP-like motifs. Anti-PCNA immunoprecipitates show kinase activity that is inhibited by KRP1;1 and KRP4;2, indicating the formation of quaternary complexes PCNA-CycD/CDKs-KRPs in which PCNA would act as a platform. This inhibitory effect seems to be differential during the germination process, more pronounced as germination advances, suggesting a complex regulatory mechanism in which PCNA could bind different sets of cyclins/CDKs, some more susceptible to inhibition by KRPs than others.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Zea mays/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Ciclinas/metabolismo , Germinação , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Zea mays/enzimologia , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA